# The Status of Lake Trout Populations in Northeastern Ontario (2000-2005) 

Wayne Selinger and Doug Lowman<br>NE Regional Planning Unit<br>Ontario Ministry of Natural Resources

Scott Kaufman and Michael Malette
Cooperative Freshwater Ecology Unit
Laurentian University, Sudbury

October 2006


## Executive Summary

Ontario boasts nearly 2300 lake trout lakes, $25 \%$ of the global distribution (Olver et al. 1991). Lake trout are unique among Ontario sportfish and are highly valued by anglers. The species has stringent habitat requirements (deep, cold, well-oxygenated lakes with clean, windswept rock rubble shorelines for spawning) and is sensitive to habitat change. Biological attributes, such as slow growth and late maturity, limit reproductive potential and sustainable harvest levels.

A concentration of approximately 1000 lake trout lakes is distributed along the height of land between Wawa and the Quebec border within the Northeast Administrative Region (NER) of the Ontario Ministry of Natural Resources. In 2000, the Northeast Lake Trout Project, was launched to evaluate the present health of NER lake trout populations. The overall objectives of this 5 year collaborative project were to consolidate relevant historic data, to update available information regarding the status of acid damaged lake trout lakes, and to evaluate the overall health and sustainability of the regional resource. To accomplish this, estimates of fishing pressure were obtained for 679 lakes using aerial survey methods and 140 index netting surveys were conducted. These data were used to provide a snapshot of current resource health and to explore potential drivers of the observed trends in angler effort and resource status. Individual fish sampling records were pooled to develop regional life history benchmarks.

Widespread regional acidification linked to industrial pollution severely impacted approximately 100 lake trout lakes in NER. Fortunately, metal smelter emissions and surface drainage of mine tailings have been reduced over time and lake trout populations are responding positively to water quality improvements. Native populations survived acidification in 25 lakes and selfsustaining populations have been reestablished in 10 additional lakes through hatchery stocking. Restoration efforts on another 34 lakes are underway. Unfortunately, 31 lakes remain void, the majority of which require additional chemical recovery. Furthermore, fish community alterations may present a barrier to recovery in many lakes.

Applied restoration strategies are presented including a variety of lake trout stocking strategies and a range of harvest control measures. Nearly 250,000 lake trout were stocked between 2001 and 2005. Additional stocking and a long-term monitoring program are required. We propose a monitoring program which would require an estimated $\$ 30,000$ annually to implement.

While acid damaged lake trout lakes in NER have shown dramatic chemical recovery in recent decades and efforts to restore lost lake trout populations are well underway, the broader state-ofresource data collected suggests that NER lake trout populations are in poor health overall. Of 915 lakes presently managed for lake trout in NER only 680 (74\%) are considered to be selfsustaining.

Current levels of lake trout fishing pressure are of concern - 32\% of the self-sustaining lakes surveyed are experiencing angling effort beyond sustainable levels. Fishing pressure was found to be highest in watersheds adjacent to Sault Ste. Marie, Blind River, and Elliot Lake.
Surprisingly, watersheds adjacent to Sudbury were fished less intensely than watersheds closer to Sault Ste. Marie, a trend presumed to be related to poor resource status in the Sudbury area owing to the combined impacts of acidification and past exploitation.

Spatial analyses of angling effort revealed significant contributors to effort were the presence of roads and cottages. Watersheds with high road density were found to have high mean fishing pressure. Furthermore, there was a significant increase in open water effort, and in turn annual effort, on lakes with good road access. Effort on the majority of lakes with easy access (highway and primary roads) was found to exceed effort at maximum sustainable yield ( $\mathrm{E}_{\mathrm{msy}}$ ). Effort on almost half of the cottage lakes surveyed was also found to exceed $\mathrm{E}_{\mathrm{msy}}$. Thus, accessible, developed lakes are attracting unsustainable levels of fishing pressure. While smaller, more remote lakes can have high effort during the winter from snowmobile use, observed levels of annual effort are considered 'safe' for the majority of these lakes (i.e. observed effort below $\mathrm{E}_{\mathrm{msy}}$ ).

One other key driver of observed angling pressure was detected. Lake trout biomass, a surrogate of angling quality, was found to have a significant positive effect on angler effort especially for remote lakes. Anglers are willing to work harder for a high quality angling experience. Together, biomass and accessibility play a significant role in the distribution of effort across the landscape.

To build on the analysis of angler effort data discussed above, standard index netting data was used to estimate current lake trout abundance on a representative subset of 130 self-sustaining NER lake trout lakes. As a means to characterize four stages of fishery status or health, estimates of lake trout density and angler effort were compared to reference points or benchmarks for expected abundance and sustainable fishing pressure at maximum sustained yield (MSY). Only $16.9 \%$ of the lakes sampled received a healthy diagnosis (i.e. observed abundance above benchmark and sustainable fishing pressure). An additional $15.4 \%$ of the lakes sampled were characterized by good lake trout abundance but are presently being over-fished; in these lakes, abundance can be expected to decline. A further $26.9 \%$ of the lakes sampled are presently being over-fished and abundance has already declined. Finally, $40.8 \%$ of the lakes sampled were classified as degraded; both abundance and fishing pressure are low. Assuming the 130 lakes selected in this study reflect the status of 696 lakes presently considered to be either selfsustaining or partly self-sustaining (i.e. 16 lakes stocked on a supplemental basis), extrapolating to the entire region reveals that there may be only 225 self-sustaining lake trout lakes in NER which presently provide for healthy levels of lake trout abundance and that nearly half of these lakes are subject to unsustainable levels of fishing pressure.

Spatial trends in resource status were detected. Only 20.0\% of Sudbury District lakes were found to meet the abundance benchmark, as compared to $32.3 \%$ regionally, and a full $53.3 \%$ of Sudbury lakes were classified as degraded. Again, the poor condition of Sudbury lakes can likely be attributed to the combined impacts of acidification and past exploitation. North Bay District lakes were found to be slightly better off ( $22.2 \%$ meet the abundance benchmark, $40.7 \%$ classified as degraded). SSM District lakes were found to be the healthiest ( $44.0 \%$ meet the abundance benchmark, 30\% classified as degraded).

The model of resource status used implies that given a reduction in exploitation following a decline in angling quality (ie. a reduction in lake trout abundance), populations should recover over time. However analyses showed a number of potential barriers to this recovery process. Lake trout abundance was found to decrease with increasing species richness, particularly for populations which fall below the abundance benchmark. A combination of high species richness and lake trout exploitation could lead to long term degradation. Alternately, a lake trout
abundance response may be more related to the presence of certain key species than to overall species richness. For example, the data showed smallmouth bass negatively impact lake trout abundance and population status. Lake trout abundance was found to be significantly lower where smallmouth bass were present and there were disproportionately more healthy lakes where smallmouth bass were absent. Other studies have demonstrated similar negative effects where rock bass are present. Based on these findings, introduction rates for several potential competitors were explored. It was estimated that either smallmouth bass, rockbass, or both have been introduced into approximately $25 \%$ of NER lake trout lakes and that walleye have been introduced into approximately $10 \%$ of NER lake trout lakes. These introduction rates would seem alarming considering the documented impact that such competitive species can have on lake trout population health.

As supported by current literature, lake trout abundance was also found to decrease in the presence of coregonids (lake herring or whitefish). A negative shift in resource health as determined through comparison to established abundance reference points was also observed. This shift was unexpected given that the abundance benchmarks were calculated based on empirical estimates of asymptotic length ( $L_{\infty}$ ). Higher estimates of $L_{\infty}$ and lower abundance reference points result where coregonids are present and should in theory balance off the reduction in observed abundance all other factors being equal. A plausible explanation for a decline in resource health would be that larger bodied lake trout populations (usually found in the presence of coregonids) are more sensitive to exploitation than smaller bodied populations. Coregonids not only serve as a forage species but also compete with young lake trout. As a large bodied lake trout population is exploited, coregonids become more abundant and can present a barrier to the survival of young lake trout. Depleted populations of large bodied lake trout may be very slow to recover given this potential barrier.

Finally, residual angler interest was identified as a potential barrier to population recovery. For lakes which fall below the abundance benchmark, angler effort was found to be positively correlated with lake trout density. Angler interest in marginal fisheries would indeed appear to be density dependant and depleted lakes may be very slow to recover without additional harvest control.

Regional benchmarks were developed for key life history parameters. These benchmarks will ultimately be used to calibrate population models and to explore potential management options. Length, weight, age, and maturity data were reviewed by sex. With biological data pooled for the region, female lake trout were found to be $50 \%$ mature at age 7 (total length $=402 \mathrm{~mm}$ ) and $90 \%$ mature at age 11 ( 538 mm ). Males were found to be $50 \%$ mature at age 6 ( 383 mm ) and $90 \%$ mature at age $11(514 \mathrm{~mm})$. Comparison of male and female age distributions revealed that there are fewer old female lake trout (i.e. beyond age 10) than male lake trout in NER. Recent analyses presented by Casselman (2004) suggests that mature females are more vulnerable to angling from mid to late summer given energy requirements associated with gonad development. Specifically, commencing July 1, the proportional harvest of mature females can increase to $70 \%$ when only $13 \%$ of the population falls into this category. Such a harvest trend would be of great concern for easy access / cottage type lakes which tend to receive high summer effort.

In summary, while efforts are being made to restore damaged lake trout populations in Northeastern Ontario, decisive action is required to address emerging issues. Key factors currently impacting resource health include the proliferation of road access, over-exploitation, and the impact of introduced species. These stressors often act in tandem, where lakes with good road access have higher rates of exploitation and higher incidence of introduced species. Management options to reduce harvest include modified seasons / limits and size based restrictions. Public education initiatives and regulatory changes are suggested as a means to address the growing threat associated with introduced species. Finally, it is imperative that the location of new resource access roads be planned in a manner that does not further erode the remoteness of self-sustaining lake trout lakes.

## Acknowledgements

First and foremost the authors would like to acknowledge the essential contributions made by all present and past members of the lake trout project team and steering committee. Project Team members made tangible contributions towards project planning and implementation and were involved in all critical decision points along the way.

## The Northeast Lake Trout Project Team

Dave Brown, Ontario Federation of Anglers and Hunters
Stephen Devos, Sudbury Area Supervisor - Sudbury District
Greg Deyne, Regional Fisheries Specialist - Northeast Planning Unit
Warren Dunlop, Aquatic Ecologist - Peterborough Main Office
Andre Dupont, Management Biologist - Sault Ste Marie District
Brenda Harrow, Fish and Wildlife Technician - Sudbury District
Scott Kaufman, Extension Biologist - Laurentian Freshwater Ecology Unit
Doug Lowman, Data Manager - Northeast Planning Unit
Michael Malette, Data Manager - Laurentian Freshwater Ecology Unit
Chuck McCrudden, Management Biologist - North Bay District
Richard Rowe, Management Biologist - North Bay District
Wayne Selinger, Project Manager - Northeast Planning Unit
Ed Snucins, Lake Rehabilitation Biologist- Laurentian Freshwater Ecology Unit
Roel Teunissen, Parks Planner - Ontario Parks
Carole Trepanier, Information Officer - Sudbury District
Jim Trottier, Management Biologist - Sault Ste Marie District
Marg Watson, Northern Ontario Tourist Outfitters’ Association
Thanks as well to all NER District Offices for their role in dedication of OLL funding to the project, assembly of relevant historic information towards creation of the new regional lake trout database, and collection of index netting and aerial survey data. The project could not have been completed without District support.

Successful implementation of the project was also very much dependant on partner support. Well over $\$ 250,000$ in financial and in-kind support was garnered. The following partners listed in alphabetic order are recognized for their contributions.

Domtar<br>Falconbridge<br>INCO<br>Laurentian University<br>NORAIR<br>Northern Ontario Tourist Outfitters’ Association<br>Ontario Federation of Anglers and Hunters<br>Ontario Ministry of the Environment<br>Ontario Parks<br>Sault College<br>Sudbury Aviation<br>Tembec

The Laurentian University Cooperative Freshwater Ecology Unit deserves special mention given a key role in project implementation. Many of the field surveys were completed by Laurentian field staff. Furthermore, in addition to the two Laurentian co-authors, the contributions made by John Gunn, George Morgan, and Ed Snucins towards assembly of historic information, development of methods, and management / analysis of the data collected cannot be overstated.

Last but not least, thanks to Greg Deyne, Warren Dunlop, John Gunn, Nigel Lester, and Steve McGovern for sound project direction, advice, and support along the way, as well as for time spent on peer review.

## Table of Contents

|  | Page |
| :---: | :---: |
| Executive Summary | i |
| Acknowledgements | v |
| Table of Contents | vii |
| List of Tables | ix |
| List of Figures | X |
| List of Appendices | xii |
| 1.0 - Introduction | 1 |
| 2.0 - A Review of Historical Information and Lake Trout Stock Status Codes | 2 |
| 3.0 - Collection of State-of-Resource Data: Description of Methods <br> 3.1 - Angler Effort <br> 3.2 - Lake Trout Abundance <br> 3.3 - Water Quality | $\begin{aligned} & 4 \\ & 4 \\ & 6 \\ & 6 \end{aligned}$ |
| 4.0 - Characterizing Angler Effort across NER <br> 4.1 - Temporal and Spatial Trends <br> 4.2 - Seasonal Effort and Lake Surface Area <br> 4.3-Anthropogenic Effects <br> 4.4- Observed Effort and Effort at Maximum Sustainable Yield <br> 4.5 - Predicting and Characterizing Effort | $\begin{aligned} & \hline 6 \\ & 8 \\ & 12 \\ & 14 \\ & 16 \\ & 17 \end{aligned}$ |
| 5.0 - Index Netting Results | 19 |
| 6.0 - The Quadrant Approach | 24 |
| 7.0 - NER Quadrant Analysis <br> 7.1-The SoR Dataset <br> 7.2 - The Current Status of Lake Trout Resources in NER <br> 7.3 - Spatial Trends in Resource Status <br> 7.4 - Potential Habitat Limitations and Fish Community Interactions <br> 7.4.1 - Habitat Factors <br> Lake Size <br> Thermal Habitat Availability <br> Acidification <br> Water Levels <br> 7.4.2 - Fish Community Factors <br> Species Richness <br> Presence / Absence of Key Species <br> 7.4.3-Residual Angler Interest | $\begin{aligned} & \hline 26 \\ & 26 \\ & 27 \\ & 29 \\ & 31 \\ & 31 \\ & 31 \\ & 32 \\ & 33 \\ & 33 \\ & 33 \\ & 33 \\ & 34 \\ & 39 \end{aligned}$ |


| 8.0 - Status and Recovery of Acid Damaged Lake Trout Populations in NER | 39 |
| :---: | :---: |
| 8.1 - Consideration of Potential Restoration Strategies | 45 |
| 8.1.1 - Lake Liming | 45 |
| 8.1.2 - Stocking to Reestablish Lost Lake Trout Populations | 46 |
| 8.1.3 - Multi-Species Stocking to Reconstruct Native Fish Communities | 47 |
| 8.1.4 - Monitor Natural Recovery Processes | 47 |
| 8.1.5 - Harvest Control | 47 |
| 8.2 - Selected Restoration Strategies | 48 |
| 8.3 - Monitoring Priorities | 51 |
| 8.4 - Monitoring Costs | 53 |
| 9.0 - Summary of Key Findings | 53 |
| 9.1 - Stock Status Review | 53 |
| 9.2 - Angler Effort Patterns | 53 |
| 9.3 - Life History Analysis | 55 |
| 9.4 - Quadrant Analysis | 55 |
| 9.5 - Recovery of Acid Damaged Lakes | 57 |
| 10.0 - Recommendations | 57 |
| 10.1 - Harvest Control | 57 |
| 10.2 - Introduced Species | 58 |
| 10.3 - Road Access and Development | 59 |
| 10.4 - Acid Recovery | 59 |
| 10.5 - Water Levels | 60 |
| 10.6 - Future State-of-Resource Monitoring | 60 |
| 11.0 - Final Comments | 60 |
| - References | 61 |

## List of Tables

| Page |  |  |
| :---: | :---: | :---: |
| Table 1: | Breakdown of lakes presently managed for lake trout in NER by stock status code. | 3 |
| Table 2: | Seasonal values for midday bias factors ( $\mathrm{K}_{\mathrm{m}}$ ) used in expansion formulae. | 5 |
| Table 3: | Travel speeds assigned by road class for time-to-lake analysis. | 8 |
| Table 4: | Percent of lakes by surface area category where observed angling intensity ( $\mathrm{E}_{\mathrm{obs}}$, hours $\bullet \mathrm{ha}^{-1}$ ) is less than or greater than effort at maximum sustainable yield ( $\mathrm{E}_{\mathrm{msy}}$, hours $\bullet \mathrm{ha}^{-1}$ ). Numbers in parentheses are the number of lakes. | 17 |
| Table 5: | Mean values for age, length, and weight of lake trout sampled via the Nordic method. | 20 |
| Table 6: | Maturity schedule for female lake trout in NER by age, length, and weight. | 24 |
| Table 7: | Maturity schedule for male lake trout in NER by age, length, and weight. | 24 |
| Table 8: | Breakdown of NER lake trout lakes by SoR Quadrant. | 29 |
| Table 9: | Quadrant breakdown by District. | 29 |
| Table 10: | Breakdown of lakes by quadrant with and without water level manipulation. | 33 |
| Table 11: | Acid damaged lake trout lakes in NER including relevant locational information, physical parameters, current pH , and stock status. | 42-44 |
| Table 12: | Breakdown of Acid Damaged Lake Trout Lakes in NER by pH Category. | 45 |
| Table 13: | Breakdown of Acid Damaged Lake Trout Lakes in NER by Current Stock Status. | 45 |
| Table 14: | Lakes Selected for Restoration and Stocking Strategies Established via Northeast Lake Trout Enhancement Project. | 49-50 |
| Table 15: | Summary of harvest control measures applied to acid damaged lake trout lakes in NER. | 51 |
| Table 16: | Monitoring priorities related to restoration of acid damaged lake trout lakes in NER. | 52 |

## List of Figures

|  |  | Page |
| :---: | :---: | :---: |
| Figure 1: | Classification of 915 lakes managed for lake trout in NER by management intent. | 3 |
| Figure 2: | Geographic extent of aerial angler surveys in northeastern Ontario. | 4 |
| Figure 3: | Documented angler effort versus sustainable angler effort ( $\mathrm{E}_{\text {msy }}$ ). | 7 |
| Figure 4: | Historical estimates of annual effort intensity (hours• $\mathrm{ha}^{-1}$ ) versus current estimates (SoR). | 9 |
| Figure 5: | Mean estimated annual effort intensity by watershed as compared to mean sustainable benchmarks (i.e. mean values of $\mathrm{E}_{\mathrm{msy}}$ by watershed). | 10 |
| Figure 6: | Distribution of unsustainable angling effort in NER as determined through comparison of individual lake pressure estimates to the regional $\mathrm{E}_{\text {msy }}$ benchmark of 6.4 ang-hrs / ha. | 11 |
| Figure 7: | Lake trout winter and open water angling effort $\left(\log _{10}\right.$ hours +1$)$ versus lake surface area $\left(\log _{10}\right)$. | 12 |
| Figure 8: | Winter angling intensity $\left(\log _{10}\right.$ hours $\bullet \mathrm{ha}^{-1}+1$ ) versus open water angling intensity. | 13 |
| Figure 9: | Winter and open water angling intensity $\left(\log _{10}\right.$ hours $\left.\bullet \mathrm{ha}^{-1}+1\right)( \pm 95 \%$ confidence interval) on different sized lakes. | 14 |
| Figure 10: | Mean estimated annual angling intensity versus road density by watershed. | 14 |
| Figure 11: | Lake trout angling effort ( $\pm 95 \%$ confidence interval) by access type. | 15 |
| Figure 12: | Lake trout angling effort ( $\log _{10}$ hours +1 ) ( $\pm 95 \%$ C.L.) on lakes with and without cottages | 16 |
| Figure 13: | The effect of lake trout biomass as a surrogate of angling quality on documented effort intensity. | 19 |
| Figure 14: | Scatter plot of total length at age for male and female lake trout sampled. | 21 |
| Figure 15: | Mean length at age (showing 95\% CL's) for male and female lake trout sampled. | 21 |
| Figure 16: | Age frequency distribution for all lake trout sampled. | 22 |
| Figure 17: | Length frequency distribution for all lake trout sampled. | 23 |
| Figure 18: | Proportion of female lake trout mature by age for NER. | 23 |


| Figure 19: | Proportion of male lake trout mature versus age for NER. | 24 |
| :--- | :--- | :--- |
| Figure 20: | Categorization of lake trout lakes - the quadrant approach. | 25 |
| Figure 21: | Distribution of lakes across the four quadrants - comparing an expanded <br> 130 lake set with 90 randomly selected lakes. | 26 |
| Figure 22: | Distribution of lakes across the four quadrants comparing lakes assessed <br> using the Nordic method with lakes assessed using the SLIN method. | 27 |
| Figure 23: | Current status of NER lake trout populations - expanded lake set (130 <br> lakes). | 28 |
| Figure 24: | Status of NER lake trout populations demonstrated using a deviational <br> ellipse. | 28 |
| Figure 25: | Apparent shift in resource status by District. | 30 |
| Figure 26: | Estimated adult lake trout density with lakes blocked by surface area. | 32 |
| Figure 27: | The effect of increasing species richness on estimated adult lake trout <br> density for populations falling below the expected abundance reference <br> point. | 34 |
| Figure 28: | Estimated adult lake trout density with and without the presence of <br> smallmouth bass. | 35 |
| Figure 29: | Distribution of lakes across the SoR quadrants with and without <br> smallmouth bass. | 35 |
| Figure 30: | A negative shift in resource status in the presence of smallmouth bass. | 36 |
| Figure 31: | Estimated adult lake trout density with and without the presence of <br> coregonids (i.e. lake herring and / or whitefish). | 37 |
| Figure 32: | A negative shift in resource status in the presence of coregonids. | 37 |
| Figure 34: | Distribution of lakes across the four quadrants with and without rainbow <br> smelt. <br> populations falling below the expected abundance reference point. | 38 |
| Chemical recovery of acid damaged lake trout lakes in the Sudbury basin. | 40 |  |

## List of Appendices

| Appendix 1: | Clarification / modification of lake trout stock status codes from Lake Trout Lakes in <br> Ontario (OMNR 1990). |
| :--- | :--- |
| Appendix 2: | Spring chemistry data for 104 randomly selected lakes in NER. |
| Appendix 3: | Reference points for expected lake trout density and sustainable effort at maximum <br> sustained yield (MSY). |
| Appendix 4: | Summary of index netting results for 73 Nordic netting surveys used in the NER state- <br> of-resource analysis. |
| Appendix 5: | Summary of index netting results for 57 SLIN netting surveys used in the NER state- <br> of-resource analysis. |
| Appendix 6: | Summary of additional Nordic netting data available in NER. |
| Appendix 7: | Summary of additional SLIN netting data available in NER. |
| Appendix 8: | Estimation of adult lake trout abundance from Spring Littoral Index Netting (SLIN) <br> and Nordic CUE's. |
| Appendix 9: | Application of the Shuter et al. (1998) exploitation model to NER lake trout <br> lakes. |
| Appendix 10: | Summary of key input parameters and output values - NER SoR quadrant analysis. |
| Appendix 11: | Updated water quality data for acid damaged lakes in NER. |
| Appendix 12: | Updated fish community data collected using the Nordic netting standard to evaluate <br> 50+ acid damaged lake trout lakes in NER where pH was found to exceed or approach <br> a threshold for lake trout survival and recruitment (pH 5.5). |
| Appendix 14: | Record of stocking completed towards restoration of acid damaged lake trout lakes in <br> NER (including historic stocking events). |

## 1.0- Introduction

Lake trout are unique among Ontario sportfish. The species has stringent habitat requirements (deep, cold, well-oxygenated lakes with clean, windswept rock rubble shorelines for spawning) and is commonly considered to be a barometer or indicator of cold water ecosystem health. Biological attributes, such as slow growth and late maturity, limit reproductive potential and sustainable yields. The province of Ontario boasts nearly 2300 lake trout lakes, $25 \%$ of the global distribution (Olver et al. 1991). Based on this and the socioeconomic value of the associated sport fishery, Ontario has significant responsibility in ensuring that our lake trout populations are managed wisely.

A concentration of approximately 1000 lake trout lakes is distributed along the height of land between Wawa and the Quebec border in OMNR's Northeast Region (NER). Unfortunately, lake trout populations in the northeast are subject to a range of stressors including, but not limited to: acidification, over-exploitation, the impact of introduced species, water level manipulation, and nutrient loading. Ontario's Environmental Commissioner and a number of leading fisheries scientists have expressed concern regarding the status of Ontario's lake trout populations (Environmental Commissioner of Ontario 2002; Post et al. 2002). Management efforts to date have been issue driven on a lake by lake basis. Clearly, this valuable resource would benefit from a more holistic approach to resource evaluation and management, a need recognized in recent development of Ontario’s new Ecological Framework for Recreational Fisheries Management (OMNR 2005).

Through implementation of the Northeast Lake Trout Project, an effort was made to consolidate information regarding lake trout lakes in NER and to evaluate the overall status and sustainability of the resource. Available / relevant historic information was captured and is stored in a new regional lake trout database available as an extension to this report. Current state-of-resource (SoR) data was also collected following the monitoring framework proposed by McGuiness et al. in 2000. Angling intensity and angler distribution data was explored as were the results of extensive index netting on a representative sub-sample of NER lakes. The angler effort and lake trout abundance data collected was combined to provide a snapshot of current resource health and to explore potential drivers of trends in resource status. Biological data was assembled for the region to support an analysis of life history parameters. Ultimately, this data will be used to calibrate a Fisheries Management Support System (FMSS) to represent the range of life history parameters and fishing effort documented in NER. The model will then be used to evaluate potential management options.

Approximately 100 lake trout lakes in NER were severely impacted by acidification linked to atmospheric deposition of metal smelter emissions and surface drainage of mine tailings (Polkinghorne and Gunn 1980; Matuzek et al. 1992). Updated information was collected to evaluate the status of these acid damaged lakes. Water quality is recovering; however, residual impacts to fish communities remain an issue. The Nordic netting standard was applied to update fish community data for 50 lakes where pH was found to meet established lake trout thresholds ( $\mathrm{pH}>5.5$ ). Water quality and fish community data are presented as are selected restoration strategies and monitoring priorities.

## 2.0 - A Review of Historical Information and Lake Trout Stock Status Codes

A major goal of this project was to accumulate background information regarding 1000+ lake trout lakes in NER. All existing information on file at the District Offices was reviewed and key elements were entered into a customized Access application. The data captured includes general information regarding location, physical characteristics, surrounding land use designations (e.g. parks and protected areas), and stock status as well as more detailed information regarding stocking, recruitment, bathymetry, water chemistry, index netting results, fish community records, and angler survey data. The new regional lake trout browser created is available as an extension to this report.

A separate exercise was undertaken to pull together all available standard index netting data collected in NER. The condition and utility of past survey data ranged widely across the region. Some survey data was only available as original hard copy field records - these surveys were entered into Fishnet (FN2). In other cases, survey data had already been entered and archived but required substantive quality checking / data cleaning to bring it to a useable standard. The end result is a collection of 249 clean Fishnet (FN2) files (136 Nordic Surveys, 90 SLIN surveys, and 23 SPIN surveys). It should be noted that this number includes 140 netting surveys completed between 2000 and 2004 under the umbrella of this project. A final set of FN2 files has been submitted for central archiving and will be available to serve ongoing research needs.

Based on the historic information gathered and on input from District staff, all lakes in NER have been reclassified as to lake trout stock status using the classification system presented in Lake Trout Lakes in Ontario (OMNR, 1990) - a listing compiled as a component of the Lake Trout Community Synthesis. The classification system used in 1990 was expanded and clarified for this review (see Appendix 1). The only significant change to the actual coding system being the addition of 3 re-introduction codes (R, R1, and R2) used to differentiate lakes which once supported native populations from true first time introductions (I, I1, and I2). In addition to a region wide review of current stock status codes, a number of other potential sorting tools were incorporated into development of the new regional database including fields to flag acid damaged waters, put-grow-take fisheries, and lakes that are no longer being managed for lake trout. Assembling a complete list of NER lake trout lakes and classifying lakes as to current stock status is considered to be one of the key outcomes of this project.

A first attempt at describing the overall health of lake trout populations in NER was made as a direct product of the above mentioned review of lakes and stock status. There are a total of 1027 lakes in NER which either support existing lake trout populations or have historic references on file regarding lake trout presence. The first step at describing resource status was to weed out lakes not presently managed for lake trout. In order for a lake to fit this category, Districts would have indicated that lake trout are not currently present and that they do not plan to reestablish a population. In some cases, historic evidence regarding lake trout presence is weak or simply related to past stocking attempts, while in other cases; native lake trout populations have been lost. Lakes with extirpated populations were still considered to be managed for lake trout providing long-term objectives for the lake include lake trout restoration (e.g. acid damaged lakes where additional water quality improvement is anticipated). Of the 1027 lake trout lakes on record in NER, 915 are presently managed for lake trout suggesting that we have abandoned
management efforts on 112 lakes. Table 1 provides a detailed breakdown of the lakes presently managed for lake trout by status code and Figure 1 presents a breakdown by current management intent.

Table 1: Breakdown of lakes presently managed for lake trout in NER by stock status code.

| Stock Status | Abbreviated Description (see Appendix 1 for full description) | Number of Lakes |
| :---: | :--- | :---: |
| N1 | native population - self-sustaining, not presently stocked | 621 |
| N2 | native population - supplemental stocking, native strain | 1 |
| N3 | native population - supplemental stocking, non-native strain | 15 |
| N5 | native population - little or no reproduction, PGT stocking | 30 |
| R | reintroduced population, further information unknown | 3 |
| R1 | reintroduced population, no native stock, self-sustaining | 9 |
| R2 | reintroduced population, no native stock, ongoing stocking | 36 |
| I | introduced population, further information unknown | 19 |
| I1 | introduced population, self-sustaining | 50 |
| I2 | introduced population, ongoing stocking | 82 |
| U | histrory and status unknown | 19 |
| E | lake trout population extirpated | 30 |



Figure 1: Classification of 915 lakes managed for lake trout in NER by management intent.

With possible exception of introduced populations being managed on a put-grow-take basis (i.e. 71 of the 82 lakes classified as I2), one can safely assume the desired management objective for the majority of the lakes included in the above breakdown to be abundant naturally reproducing lake trout. As such, Figure 1 would appear to provide initial evidence of long-term degradation of NER lake trout populations. Of the 915 lakes presently managed for lake trout, only 680 (74\%) are considered to be self-sustaining.

## 3.0 - Collection of State-of-Resource Data: Description of Methods

A more tangible measure of resource health was gained through collection of current data regarding the status of NER lake trout lakes following methods outlined in a report entitled Monitoring the State of the Lake Trout Resource: Program Design and Costs (McGuiness et al. 2000). The authors of this report recommend comparing measures of lake trout abundance and fishing effort to appropriate reference values in order to evaluate the status of a population of lakes. Therefore, in addition to collecting current water quality data, estimates of angler effort and lake trout abundance were obtained through extensive sampling of NER lake trout lakes between 2001 and 2004. The methods used are discussed in detail below.

## 3.1-Angler Effort

Initial data collection efforts were focused on estimation of annual angler effort using the aerial method proposed by Lester et al. (1991). Ten of 14 core northeast tertiary watersheds were surveyed, providing winter and open water effort data for a total of 679 lake trout lakes. The 10 watersheds surveyed were selected to maximize the number of lake trout lakes included and to provide broad geographic representation across the region (Figure 2).


Figure 2: Geographic extent of aerial angler surveys in northeastern Ontario.
Flight lines were designed to maximize coverage within each surveyed watershed; however, in some cases outlying lakes were dropped to keep flight times reasonable. Data collection was stratified by tertiary watershed, angling season (winter vs. open water), and day type (weekdays
vs. weekend days + holidays). One midday flight (i.e. between 1000 and 1400 hrs ) was conducted each week, alternating between weekdays and weekends. Pressure estimates (E) were calculated by stratum from mean midday activity counts (MAC's) using the following formula from Lester et al. (1991):
$E_{j}=\frac{M A C_{j} * T_{j} * \bar{p}_{j} * N_{j}}{K_{m, j}}$
where j identifies a season, T is the length of the fishing day ( 14 hours for open water season, 10 hours for winter), $p$ is mean party size (where parties were counted instead of individual anglers; e.g. in the case of occupied ice huts we applied an estimated party size of 2 anglers per hut), N is the number of fishing days in the season, and $\mathrm{K}_{\mathrm{m}}$ is the midday bias factor.

Bias factors or expansion coefficients were used to adjust daily fishing pressure estimates obtained from midday activity counts. The bias factors applied were based on interim daily activity profiles established through preliminary analysis of available roving creel data (Scott Parker, personal communication) and are presented in Table 2. It should be noted that the factors applied do not exactly match the bias factors ultimately presented by Parker et al. (2006) and that the authors have recommended that additional work be undertaken to further refine species specific expansion coefficients. For some strata, the updated bias factors presented by Parker et al. (2006) are lower than the values applied and would result in higher pressure estimates, for other strata pressure estimates would be slightly lower. It is assumed that annual pressure estimates would vary little from those used to support the effort analysis presented in Section 4 of this report.

Table 2: Seasonal values for midday bias factors $\left(\mathrm{K}_{\mathrm{m}}\right)$ used in expansion formulae.

| Season | $\mathrm{K}_{\mathrm{m}}$ (Weekdays) | $\mathrm{K}_{\mathrm{m}}$ (Weekends \& Holidays) |
| :--- | :---: | :---: |
| Winter (lake trout) | 1.5 | 1.2 |
| Open Water (general) | 1.3 | 1.1 |

It should also be noted that although aerial survey methods do supply reasonable estimates of total fishing effort, one cannot partition fishing effort to a particular species without adding angler interviews to the survey design. This was not deemed practical given the coverage of 679 lake trout lakes in this survey. As a result, where multiple sportfish species are present, aerial estimates of total fishing pressure may over-state effort directed at any one particular species. An attempt was made to utilize existing roving creel data to develop guidelines to partition effort by target species where multiple sportfish exist (Scott Parker, personal communication). Unfortunately, there was not sufficient archived creel data by community type for NER to develop worthwhile guidelines in this regard. We fully support additional research in this area. We do however believe that the estimates of total angler effort obtained provide for meaningful comparison to established benchmarks for the majority of lake trout lakes in the northeast.

## 3.2-Lake Trout Abundance

A second stage of data collection involved standardized index netting as a means to characterize lake trout abundance on an unbiased subset of lakes covered by the aerial effort surveys. Lakes were randomly selected by tertiary watershed and size class (small = 50 to 150 ha, medium = 150 to 400 ha, large $=400$ to 20000 ha ) to ensure adequate representation of lake sizes across NER. To ensure a robust dataset, a $20 \%$ sampling intensity was selected. The $20 \%$ random sample was further expanded through addition of 40 NER lakes selected from index netting data already available. Given a sample size considerably higher than would be realistic to expect from a provincial SoR monitoring program, the data collected will provide a solid baseline for future monitoring. The data will also provide information regarding among lake variation in measures of abundance and effort, which should help refine future SoR monitoring efforts.

Two different index netting standards were applied: Spring Littoral Index Netting or SLIN (Hicks, 1999) and Nordic Netting (Appelberg, 2000; Morgan and Snucins, 2005). SLIN data was for the most part collected by MNR District staff while the majority of the Nordic data was collected in partnership with Laurentian University’s Cooperative Freshwater Ecology Unit. More regarding use of the index data collected to serve SoR evaluation needs is presented in Section 6.

## 3.3 - Water Quality

Finally, water quality sampling was conducted on the same random subset of lakes. Sampling was completed following ice-out and prior to thermal stratification of lakes (between May $3^{\text {rd }}$ and May $19^{\text {th }}, 2004$ ), to ensure that lake waters were well mixed and that surface water samples were representative of whole-lake conditions (Clark 1995). Samples were obtained using a sub-surface grab technique, where water was taken from a depth of approximately 0.5 meters to avoid surface contamination. Measured parameters included pH , alkalinity, conductivity corrected to $25^{\circ} \mathrm{C}$, dissolved organic carbon (DOC), total phosphorous (TP), total kjeldahl nitrogen (TKN), turbidity, and colour. Standard conductivity was converted to total dissolved solids (TDS = 0.666 x Conductivity), a measure of nutrient availability and a key parameter used in the benchmarking process (see Section 6.0). The other parameters, such as pH , are considered to be general indicators of habitat suitability that will serve to support further investigation of key population drivers and as a baseline to monitor changes over time. The water quality data collected is presented in Appendix 2.

## 4.0-Characterizing Angler Effort across NER

Characterizing lake trout angling effort across NER was a key deliverable of the Northeast Lake Trout Project. Aerial pressure counts were conducted between 2001 and 2003, covering both open water and winter seasons. Refer to Section 3.1 for detail regarding the data collection methods employed.

Individual lake estimates of open water, winter, and annual fishing pressure based on the aerial pressure counts conducted between 2001 and 2003 are stored in NER's new lake trout browser, available as an extension to this report. Reference points for fishing pressure at maximum
sustained yield ( $\mathrm{E}_{\mathrm{msy}}$ ) were also calculated for each lake, where TDS data was available (Equation A3.4, Appendix 3).

Approximately $32 \%$ of lakes surveyed support valued warm water sportfish species in addition to lake trout, specifically walleye, smallmouth bass and/or northern pike. In order to test the assumption that effort was not different on these more diverse fisheries, separate t-tests were used to compare mean estimated annual effort on lakes with and without each of the species of interest. No significant differences in mean effort were detected. Furthermore, with lakes classified as to presence / absence of any one of the three species, a t-test used to compared mean estimated annual effort again returned a non-significant result ( $\mathrm{t}_{524}=0.42, \mathrm{P}=0.67$ ). Based on these comparisons, it was decided to adopt a conservative approach to analyses. All effort documented was assumed to be effective towards lake trout and the fishing pressure estimates obtained were compared to lake trout specific values of $\mathrm{E}_{\mathrm{msy}}$.

Historical effort data points were also available for a number of lakes stratified by season (open water, winter) or as annual estimates. These data were compiled from aerial pressure counts and roving creels conducted between 1975 and 1994. In total, there were 117 lakes with historical winter estimates, 121 lakes with summer estimates, and 106 lakes with annual estimates. The majority of these lakes were in FMZ 10 and no historical data were available for FMZ 8.

The 679 lakes surveyed were sorted by stock status code; 529 or $78 \%$ of the lakes surveyed are considered to be self-sustaining or are being stocked on a supplemental basis (N1, I1, R1, and N 3 ). A mean regional benchmark ( $\mathrm{E}_{\mathrm{msy}}$ ) for these self-sustaining lake trout lakes was found to be 6.4 angler-hours per hectare (ang-hrs / ha). The mean annual angling intensity documented for the same self-sustaining lakes was 5.4 ang-hrs / ha. While this would seem encouraging, documented angling intensity ranged from 0 to $30+$ ang-hrs / ha and $32 \%$ of the lakes surveyed were found to have documented angler effort exceeding $\mathrm{E}_{\text {msy }}$ (Figure 3). The diagonal line on the scatter plot is the 1:1 line; all data points above this line had estimated effort that exceeded $\mathrm{E}_{\text {msy. }}$


Figure 3: Documented angler effort versus sustainable angler effort ( $\mathrm{E}_{\mathrm{msy}}$ ).

To explore potential factors that may affect effort, NER’s new lake trout database was used to classify each surveyed lake for the following:

- Presence / absence of cottages
- Presence / absence of tourist outfitters
- Existence of modified angling seasons (i.e. modified winter or summer lake trout seasons)

In addition, spatial analysis was undertaken to evaluate lake accessibility. Road density in km per $\mathrm{km}^{2}$ was calculated for each surveyed tertiary watershed and quality of access to each individual lake was classified one of seven ways:

1. Highway
2. Primary road
3. Secondary road
4. Tertiary road
5. Trail (lake $>500 \mathrm{~m}$ but $<1000 \mathrm{~m}$ from a road)
6. Remote (lake $>1000 \mathrm{~m}$ from a road)
7. Restricted (gated or posted roads only)

Spatial analysis was also undertaken to determine the straight line radius from each lake to population breaks of 5000, 10000, 25000 and 50000 people. For road accessible lakes, time-tolake was also calculated from each population centre in NER with a population base exceeding 3000. These times were based on the combination of roads needed to access the lake and an assigned travel speed for each road type (Table 3).

Table 3: Travel speeds assigned by road class for time-to-lake analysis.

| Road Standard | Assigned Travel Speed (km / hr) |
| :--- | :---: |
| Highway | 100 |
| Primary | 80 |
| Secondary | 40 |
| Tertiary | 20 |

## 4.1-Temporal and Spatial Trends

Three separate paired t-tests were used to compare historical (1975 through 1994) and current estimates of winter, open water and annual angling intensity (hours $\bullet \mathrm{ha}^{-1}$ ). Data were transformed to logarithmic base 10 to meet parametric assumptions. For 106 lakes where both historic and current estimates of annual angling intensity were available, historical estimates were found to be significantly higher than current ones by about 2.3 hours $^{\bullet} \mathrm{ha}^{-1}$ (paired t-test: $\mathrm{t}_{105}=4.31, \mathrm{P}<0.001$; Figure 4).


Figure 4: Historical estimates of annual effort intensity (hours $\bullet \mathrm{ha}^{-1}$ ) versus current estimates (SoR).

Most of the documented reduction occurred during the open water season (-2 hours; paired t-test: $\mathrm{t}_{120}=5.68, \mathrm{P}<0.001$ ), although old estimates of winter angling intensity were still significantly higher than current ones (paired t -test: $\mathrm{t}_{116}=2.71, \mathrm{P}<0.001$ ).

With the effort data summarized by tertiary watershed, spatial trends were also apparent. Figure 5 presents mean values of estimated effort intensity, for self-sustaining lake trout lakes, by surveyed watershed as compared to watershed specific $\mathrm{E}_{\mathrm{msy}}$ reference points. The watersheds are colour coded: mean estimated effort well below mean $E_{\text {msy }}$ in green, mean estimated effort approaching $\mathrm{E}_{\text {msy }}$ in yellow (within 1.0 ang-hr / ha of $\mathrm{E}_{\text {msy }}$ ), and mean estimated effort exceeding $\mathrm{E}_{\mathrm{msy}}$ in red.

Mean estimated effort intensity was found to be highest in areas adjacent to Sault Ste. Marie, Blind River, and Elliot Lake (i.e. watersheds 2BF, 2CA, and 2CD). By comparison, mean effort intensity was considerably lower in watersheds 2JD, 2CE, and 2BD all of which are removed from significant population centers. Effort intensity was found to be intermediate in watersheds 2CF, 2DA, and 2DC within reach of Sudbury and/or North Bay. Given that Greater Sudbury has a population base at least double that of Sault Ste. Marie, it is somewhat surprising that the watersheds nearer to Sudbury were fished less intensely than watersheds closer to Sault Ste. Marie. It is believed that this trend is related to poor resource status around Sudbury likely owing to the impacts of acidification and past exploitation. This assumption is explored in Section 7.2.

Figure 6 provides a slightly different view of effort distribution across the landscape. Watershed boundaries are dropped and the surveyed lakes are grouped by individual comparison to the regional $\mathrm{E}_{\text {msy }}$ benchmark of 6.4 ang-hrs / ha: landscape with estimated effort intensity below $\mathrm{E}_{\mathrm{msy}}$ in green; landscape with estimated effort intensity exceeding $\mathrm{E}_{\mathrm{msy}}$ in red. The figure further demonstrates an association between population centres and unsustainable levels of fishing pressure, the notable exception being the landscape adjacent to Sudbury, to be discussed later.


Figure 5: Mean estimated annual effort intensity (ang-hrs / ha) by watershed as compared to mean sustainable benchmarks (i.e. mean values of $\mathrm{E}_{\text {msy }}$ by watershed).


Figure 6: Distribution of unsustainable angling effort in NER as determined through comparison of individual lake pressure estimates to the regional $\mathrm{E}_{\mathrm{msy}}$ benchmark of 6.4 ang-hrs / ha.

As background towards implementation of Ontario's new Ecological Framework for Recreational Fisheries Management (OMNR 2005), annual and seasonal effort estimates were compared across the proposed new fisheries management zones (FMZ's). One-way analysis of covariance (ANCOVA) was used to determine if total effort differed by FMZ while controlling for lake surface area and one-way multivariate analysis of covariance (MANCOVA) was used to explore differential seasonal responses in effort by FMZ, controlling for surface area. Lake surface areacorrected angling effort did not differ between FMZ's (ANCOVA F $\mathrm{F}_{3,674}=0.42$, $\mathrm{P}=0.74$ ), nor was there a differential seasonal response to angling between FMZ's (MANCOVA Wilks Lambda $=0.99, \mathrm{~F}_{6,1324}=1.25, \mathrm{P}=0.28$ ).

## 4.2 - Seasonal Effort and Lake Surface Area

Angling effort (total hours) was related to lake surface area via linear correlation. Both axes were base ten logarithmic transformed to meet parametric assumptions. Slopes were compared using a t-test. Angling effort was found to be highly positively correlated with lake surface area, that is, larger lakes received more effort. This was evident in both winter and open water seasons, however large lakes received proportionally more effort during the open water season, and small lakes received proportionally more effort during the winter, as the slope of winter effort was significantly less than the slope of open water effort ( t -test: $\mathrm{t}_{1332}=6.99, \mathrm{P}<0.05$; Figure 7).

Half of the observed variation in open water effort was explained by lake surface area. This dropped to less than a quarter of the variation seen in winter effort. Overall, lake surface area explained $47 \%$ of the variation seen in annual angling effort ( $\mathrm{r}^{2}=0.47, \mathrm{P}<0.001$ ).


Figure 7: Lake trout winter and open water angling effort $\left(\log _{10}\right.$ hours +1 ) versus lake surface area $\left(\log _{10}\right)$.

Linear regression revealed a positive relationship between open water and winter angling intensity ( $\mathrm{r}^{2}=0.11, \mathrm{P}<0.001$ ), therefore lakes that tend to get fished more intensely in the summer are also fished more intensely in the winter (Figure 8).


Figure 8: Winter angling intensity ( $\log _{10} h o u r s \bullet h a^{-1}+1$ ) versus open water angling intensity. The line shown is $y=x(1: 1)$ to demonstrate lakes which receive proportionally more winter pressure (above line) and proportionally more summer effort (below line).

One tailed t-tests were used to test if the slope of the regression was less than 1 , and if the intercept was greater than zero. The slope of the regression was significantly less than one ( 0.39 ; $\mathrm{t}_{229}=8.86, \mathrm{P}<0.001$ ), which shows the intensity of winter effort proportionally decreases as open water intensity increases. Furthermore, the intercept was significantly greater than zero ( 0.29 ; $\mathrm{t}_{229}=5.76, \mathrm{P}<0.001$ ), thus a lake with no open water effort can still expect approximately 1 hour $\cdot \mathrm{ha}^{-1}$ during the winter.

An examination of the lakes which are "winter intense" (lakes above the 1:1 line; Figure 8) shows that the majority of these lakes were under 100 ha (59\%), whereas the "summer intense" lakes were mostly over 100 ha in size ( $66 \%$ ). Chi ${ }^{2}$ analysis showed the disproportionate frequency of small lakes above the 1:1 line and lakes $>100$ ha below the line was significant ( $\chi^{2}{ }_{1}$ $=31.08, \mathrm{P}<0.001$ ).

Winter and open water angling intensity (hours•ha ${ }^{-1}$ ) was compared between lakes with surface areas $<100 \mathrm{ha}, 100-500 \mathrm{ha}$, and $>500$ ha using a multivariate analysis of variance (MANOVA). Lakes greater than 100 ha in size were fished significantly more intensely than lakes less than 100 ha by an average of 0.38 hours $^{\circ} h^{-1}\left(\mathrm{~F}_{2,676}=6.53, \mathrm{P}=0.002\right)$. However, angling intensity differed significantly by season as well (MANOVA: Wilks Lambda $=0.91, \mathrm{~F}_{4,1435}=15.23, \mathrm{P}<$ 0.001 ). Lakes less than 100 ha in size were fished more intensely during the winter season, while lakes larger than 100 ha were fished more intensely during the open water season (Figure 9).


Figure 9: Winter and open water angling intensity $\left(\log _{10}\right.$ hours•ha $\left.{ }^{-1}+1\right)( \pm 95 \%$ confidence interval) on different sized lakes.

## 4.3-Anthropogenic Effects

Road density was explored as a potential driver of the spatial effort patterns documented in Section 4.1. Linear regression revealed a significant positive relationship between angling intensity and road density as expressed in kilometers of road per square kilometer of watershed ( $r^{2}=0.57, P=0.01$; Figure 10).


Figure 10: Mean estimated annual angling intensity versus road density by watershed.

One-way ANCOVA was used to explore differences in total effort based on road accessibility and one way MANCOVA was used to examine if seasonal effort differed by road accessibility. Both tests controlled for lake surface area. Total annual effort (corrected for surface area) was found to be significantly higher on highway access lakes as compared to trail, remote and restricted access lakes ( $\mathrm{F}_{6,672}=2.93, \mathrm{P}=0.008$ ). There was a differential seasonal response in angling effort to lake accessibility (MANCOVA Wilks Lambda $=0.94, \mathrm{~F}_{12,1318}=3.59, \mathrm{P}<$ 0.001 ), where there was a consistent decline in open water effort with decreased accessibility, but winter effort was unchanged regardless of access type (Figure 11).


Figure 11: Lake trout angling effort ( $\pm 95 \%$ confidence interval) by access type. Means are adjusted to a 100 ha lake.

Within each access type, the only significant seasonal difference found was that remote lakes received significantly more effort in the winter than in the open water season $\left(\mathrm{t}_{168}=2.28, \mathrm{P}=\right.$ 0.02 ). These results indicate that many remote lakes are readily accessed by snowmobile.

One-way MANCOVA was used to determine differences in winter and open water effort on lakes with / without cottages and with / without modified angling seasons, controlling for lake surface area in each case. Angler effort (corrected for lake surface area) significantly increased during both the open water and winter seasons with the presence of cottages (Wilks lambda $=0.94, \mathrm{~F}_{2,664}$ $=21.24, \mathrm{p}<0.001$; Figure 12). This suggests that cottagers may account for a large portion of effort on the lake of their residency, and they may be less likely to travel for angling opportunities.


Figure 12: Lake trout angling effort ( $\log _{10}$ hours+1) ( $\pm 95 \%$ C.L.) on lakes with and without cottages

Winter angling effort did not differ on lakes with or without modified winter seasons (ANCOVA $F_{1,668}=0.03, P=0.87$ ) and open water effort was actually significantly higher on lakes with modified open water seasons (ANCOVA $F_{1,673}=4.12, \mathrm{P}=0.04$ ), possibly owing to the increased likelihood of accessible cottage lakes having modified regulations. A two-way ANCOVA was run to test differences in open water effort on lakes with / without cottages and with / without modified open water regulations. Only the presence of cottages resulted in a significant increase in effort (ANCOVA $\mathrm{F}_{1,671}=11.61, \mathrm{P}<0.001$ ) which indicates that accessible, developed lakes are fished more, regardless of the regulation in place. Further reasons for this are discussed in Section 4.4 below. One-way ANCOVA was used to determine the effect of the presence of tourist outfitters (main tourist lodge, remote tourist outpost, and no outfitter presence) on open water effort, controlling for surface area. Open water angling effort was significantly higher on lakes with tourist lodges compared with remote tourist outposts and no tourism presence ( ANCOVA $_{2,671}=3.33, \mathrm{P}=0.04$ ).

## 4.4-Observed Effort and Effort at Maximum Sustainable Yield

A paired t-test was used to investigate observed angling intensity (hours•ha ${ }^{-1}$ ) versus effort at maximum sustainable yield ( $\mathrm{E}_{\mathrm{msy}}$ ) on lakes with cottages. Chi ${ }^{2}$ analysis was used to test frequencies of lakes where observed angling intensity was greater than or less than $\mathrm{E}_{\text {msy }}$ by presence / absence of cottages, by access type and by surface area category (three separate tests).

The presence of cottages is normally associated with easy access, which would work in tandem to account for the elevated effort observed on these lakes. Mean annual fishing intensity on cottage lakes was nearly 2.5 hours•ha ${ }^{-1}$ greater than the mean value for effort at maximum sustainable yield ( $\mathrm{E}_{\text {msy }}$ ) for these lakes, yet differences were not statistically significant (paired t-test: $\mathrm{t}_{85}=$ $0.72, \mathrm{P}=0.48$ ). There was a significantly higher proportion of lakes with cottages that exceeded $\mathrm{E}_{\text {msy }}\left(72 \%\right.$; chi $\left.{ }^{2}: \chi^{2}{ }_{1}=24.49, \mathrm{P}<0.001\right)$. In addition, the proportion of lakes that exceeded $\mathrm{E}_{\mathrm{msy}}$ significantly increased as ease of accessibility increased (chi ${ }^{2}: \chi_{6}^{2}=33.12, \mathrm{P}<0.001$ ). For
example, $57 \%$ of highway accessed lakes had observed effort greater than $\mathrm{E}_{\text {msy }}$, whereas only $20 \%$ of remote access lakes surpassed this benchmark.

Of equal concern was the proportion of large (>500 ha) lakes where the observed annual angling intensity surpassed $\mathrm{E}_{\mathrm{msy}}$ (Table 4).

Table 4: Percent of lakes by surface area category where observed angling intensity ( $\mathrm{E}_{\text {obs }}$, hours $\bullet$ ha ${ }^{-1}$ ) is less than or greater than effort at maximum sustainable yield ( $\mathrm{E}_{\text {msy }}$, hours $\bullet \mathrm{ha}^{-1}$ ). Numbers in parentheses are the number of lakes.

| Lake Surface Area | $0-100$ ha <br> (274 lakes) | $100-500$ ha <br> (230 lakes) | $>500 \mathrm{ha}$ <br> (69 lakes) | Total <br> (573 lakes) |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{E}_{\text {obs }}$ greater than $\mathrm{E}_{\text {msy }}$ | $25 \%$ | $37 \%$ | $45 \%$ | $32 \%$ |
| $\mathrm{E}_{\text {obs }}$ less than $\mathrm{E}_{\text {msy }}$ | $75 \%$ | $63 \%$ | $55 \%$ | $68 \%$ |

Seventy-five percent (206 of 274) of lakes <100 ha had observed effort less than sustainable levels, whereas $63 \%$ (135 of 230) of lakes between 100 and 500 ha had observed effort less than $\mathrm{E}_{\text {msy. }}$. Of lakes larger than 500 ha, only $55 \%$ were found to have sustainable levels of effort (chi ${ }^{2}$ : $\chi^{2}{ }_{2}=14.38, \mathrm{P}<0.001$ ). Overall, observed angling intensity was below $\mathrm{E}_{\text {msy }}$ benchmarks for $68 \%$ of lakes surveyed where data required to estimate $\mathrm{E}_{\text {msy }}$ was available.

## 4.5 - Predicting and Characterizing Effort

Stepwise multiple linear regression was used to a) determine the predictability of effort (total hours), and b) determine the major influences on effort. Since the majority of the variation in effort could be attributed to lake surface area, the residuals of the effort - surface area regression were extracted and entered into three separate multiple regression models (annual effort, winter effort, open water effort) to see if additional variation could be explained by relative proximity to population centres. The potential predictor variables explored included: straight line radius to set population breaks of 5000, 10000, 25000, and 50000; time-to-lake by road from NER population centres with populations exceeding 3000; and 'population-weighted’ straight line distances and times-to-lake. In the end, a hybrid of the two approaches to evaluating proximity to population centres was selected. Specific predictor variables used in the final regression models were population weighted times-to-lake by road from the specific population centres which broke the population thresholds of 5000, 10000, 25000 and 50000 using the straight line model. For example, to calculate the 'population weighted' time-to-lake for a lake 50 minutes from Wawa (pop'n 6800): 6800•50 ${ }^{-1}=136$, vs. a lake 120 minutes from Sudbury (pop’n 160000): $160000 \cdot 120^{-1}=1333$.

The multiple regression model developed for annual effort was:

$$
\text { Annual Effort }=-1.29+0.33 T T L * P O P 5+0.22 T T L * P O P 25\left(r^{2}=0.04, \mathrm{P}<0.001\right)
$$

where, $T T L$ *POP5 is the population weighted time-to-lake from the population break of 5000 people, and $T T L *$ POP25 is the population weighted time-to-lake from the population break of 25000 people. Since this model explained only $4 \%$ of the variation above the $47 \%$ already explained by lake surface area, annual angling effort was largely unrelated to distances and times
from population centres. Furthermore, $3.5 \%$ of the $4 \%$ explained variation was accounted for by the population weighted time-to-lake from the closest 5000 people, which indicates that the larger the closest population centre, the more effort the lake is likely to have received over the year. However, with only $4 \%$ of the variation explained, the predictive power of this equation is very low.

The multiple regression model developed to characterize open water effort was:

$$
\begin{array}{r}
\text { Open water effort }=0.09+0.43 T T L * P O P 5-0.52 T T L * P O P 50+0.22 T T L * P O P 10 \\
\left(\mathrm{r}^{2}=0.06, \mathrm{P}<0.001\right)
\end{array}
$$

where, $T$ LL *POP5 is the population weighted time-to-lake from the population break of 5000 people, TTL*POP50 is the population weighted time-to-lake from the population break of 50000 people, and $T T L^{*}$ POP10 is the population weighted time-to-lake from the population break of 10000 people. However as in the model for total effort, the majority of the explained variation ( $4 \%$ of $6 \%$ ) was accounted for by the population weighted time-to-lake from the closest 5000 people. Since the model explained only $6 \%$ of the observed variation in open water effort above the $50 \%$ explained by lake surface area, patterns in effort were again largely unrelated to geographical location.

Lastly, the multiple regression model developed for winter effort was:

$$
\text { Winter effort }=0.79 T T L * P O P 50+0.54 T T L * P O P 5-0.35 T T L * P O P 10-2.68
$$

$$
\left(\mathrm{r}^{2}=0.06, \mathrm{P}<0.001\right)
$$

where, $T T L^{*} P O P 50$ is the population weighted time-to-lake from the population break of 50000 people, $T T L * P O P 5$ is the population weighted time-to-lake from the population break of 5000 people and $T T L^{*}$ POP10 is the population weighted time-to-lake from the population break of 10000 people. With only $6 \%$ of the variation explained, very little variation in winter effort above the $21 \%$ explained by lake surface area was accounted for by geographic location. Furthermore, the time-to-lake from the closest 50000 people accounted for $5 \%$ of the $6 \%$ explained variation.

The commonality of the population weighted time to lake from 5000 people during the open water season and for annual effort indicates that overall, local populations account for more effort. However in the winter, the time to lake from the closest 50000 people was the largest driver of observed effort, which suggests that people from large population centres are traveling greater distances to angle a lake. Nonetheless, with such little variation explained by these models, it is difficult to justify conclusions and the models developed are not recommended for use as a predictive tool. The results are however highly indicative that effort is driven by factors largely unrelated to proximity to urban centres.

Two potential drivers beyond proximity to urban centres were explored in a final attempt to explain the variation in angler effort observed across NER: angling quality and quality of access. Biomass in grams per net (Nordic standard) was selected as a surrogate of angling quality inferring that few large fish or many small fish provide for similar levels of angler satisfaction. Quality of access is defined in Section 4.0. The subset of lakes used included 62 lakes evaluated using the Nordic standard. Lakes with zero effort or questionable biomass calculations were
excluded. Linear regression analysis was used to relate documented angler effort to lake trout biomass, with the dataset split into lakes with and without road access (Figure 13).


Figure 13: The effect of lake trout biomass as a surrogate of angling quality on documented effort intensity.

For remote lakes, angler effort was found to be positively correlated with lake trout biomass indicating that anglers are willing to work harder to access a lake for a high quality angling experience. This relationship did not hold true for road accessible lakes indicating that readily accessible lakes tend to be fished independent of quality.

Stepwise multiple linear regression was used to further tease out the interaction of accessibility and angling quality as key drivers of fishing pressure. The regression model developed for annual effort was:

$$
\begin{array}{r}
\log _{10} \text { Effort (total hrs) }=0.79 \log _{10} \text { Surface Area }+0.48 \log _{10} \text { Biomass }-0.57 \log _{10} \text { Access }+0.50 \\
\left(r^{2}=0.52, \mathrm{P}<0.001\right)
\end{array}
$$

The model explained 52\% of the observed variation in fishing pressure. Biomass and accessibility explained $16 \%$ of the variation beyond that explained by surface area alone: $10 \%$ by biomass, and $6 \%$ by accessibility. Both factors play a significant role in the distribution of effort across the landscape.

## 5.0 - Index Netting Results

Appendices 4 and 5 present a summary of the Nordic and SLIN netting surveys completed towards state-of-resource (SoR) reporting in NER (i.e. a representative subset of self-sustaining lake trout lakes); Nordic and SLIN data are provided separately. Neither the biological parameters nor the CUE values presented are directly comparable between standards given different survey methodologies and gear selectivity. Regional reference statistics are provided for each netting standard to facilitate consideration of individual lake results. Note that only lakes with a sample size of 10 or greater (i.e. number of fish sampled) were included in calculation of
the regional reference values for fork length, weight, condition, and age. Furthermore, the number of lakes included in calculation of the regional reference values for age was lower than for the other biological parameters. Age interpretations were not available for all surveyed lakes at the time of reporting. Aging priorities were set based on sample size as well as the type and reliability of the aging structures collected. Use of the regional reference values presented for age should take sample size (number of lakes) into consideration. The reference values for length, weight, and condition are more robust. A more detailed analysis of the index data collected towards SoR reporting is presented in Section 7. CUE data was converted to estimates of adult density making comparison between netting standards possible.

Appendices 6 and 7 present similar netting data for lakes beyond the SoR dataset, including data collected towards evaluation of acid damaged lakes and data assembled as a product of the data capture and cleaning exercise referenced in Section 2.0. Note that the regional reference values provided are the same as those presented in Appendices 4 and 5. It was decided that regional benchmarks should be based on the representative lake set as potential recovery targets for acid damaged and other degraded populations.

All lake trout captured via the index netting surveys were biologically sampled. Nordic netting is a lethal method and otiliths were extracted to determine lake trout ages. The SLIN standard on the other hand is non-lethal and lake trout ages were interpreted from either scales or fin rays where age interpretations are considered suspect (Casselman 1990). Given that lake trout sample sizes tend to be relatively low using either netting standard, only a small proportion of the lakes sampled were found to have sample sizes which would support worthwhile individual lake analysis. Undertaking so few lake specific analyses was not deemed critical to assessment of resource status at a regional scale. As an alternate approach, biological data were mined from available NER Nordic Fishnet files and pooled to support the life history analysis presented below. Approximately 4000 individual lake trout samples are represented from 105 lakes. Table 5 presents a summary of mean values for lake trout age, length, and weight for the pooled database.

Table 5: Mean values for age, length, and weight of lake trout sampled via the Nordic method from 105 lakes between 2000 and 2005 .

|  | N | Mean Age (yrs) | Fork Length (mm) | Total Length (mm) | Mean RWT (g) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| All Fish Sampled | 3954 | 7.1 | 355 | 400 | 752 |
| Females Only | 1646 | 7.3 | 366 | 410 | 763 |
| Males Only | 1579 | 8.4 | 389 | 436 | 896 |

Figures 14 and 15 present length at age data for male and female lake trout. Note that there is substantial variation in growth and that the observed variation becomes most evident beyond age 10. It should also be noted that male and female growth patterns would appear to be very similar. Student's t-tests were used to verify that there was no difference between males and females sampled for length at age $5\left(\mathrm{t}_{227}=0.74, \mathrm{P}=0.46\right)$ and length at age $10\left(\mathrm{t}_{55}=0.88, \mathrm{P}=0.38\right)$.


Figure 14: Scatter plot of total length at age for male and female lake trout sampled.


Figure 15: Mean length at age (showing 95\% CL’s) for male and female lake trout sampled.

Age and length distributions were also investigated (male, female, and combined). Initially, visual comparison of male and female age distributions indicated that there were fewer female lake trout beyond age $10 . \mathrm{Chi}^{2}$ analysis confirmed that, with lake trout samples pooled across the region, there were disproportionately fewer females caught beyond age 10 ( $19.1 \%$ versus $28.0 \%$ for males; $\chi^{2}{ }_{1}=20.78, \mathrm{P}<0.001$ ). A t-test used to compare mean age for male and female lake trout ( 8.4 yrs versus 7.3 yrs respectively) supported this finding ( $\mathrm{t}_{1902}=4.50$; $\mathrm{P}<0.001$ ). Such a result could be related to sex-specific reproductive costs. Higher active metabolic cost for females can result in higher catchability given increased energy requirements for gonad development. Recent analyses (Casselman 2004) suggest that mature female lake trout are more vulnerable to angling from mid to late summer. Specifically, gonad development in lake trout commences after July 1 and the proportional harvest of mature females can increase to $70 \%$ when only $13 \%$ of the population falls into this category.

Although sex based differences associated with older age classes were found, length and age distributions for male and female lake trout were combined and data is presented in Figures 16 and 17.


Figure 16: Age frequency distribution for all lake trout sampled.


Figure 17: Length frequency distribution for all lake trout sampled.
Note that the most abundant cohort sampled for both sexes was age 5, representing the age of full recruitment to the Nordic gear. Lake trout maturity data was also reviewed. Results for female lake trout are presented in Figure 18 and Table 6 while Figure 19 and Table 7 present the results for males.


Figure 18: Proportion of female lake trout mature by age for NER.

Table 6: Maturity schedule for female lake trout in NER by age, length, and weight.

| Proportion Mature | Age (years) | Total Length (mm) | Weight (g) |
| :--- | :--- | :--- | :--- |
| $10 \%$ Mature | 3 | 301 | 218 |
| $50 \%$ Mature | 7 | 402 | 552 |
| $90 \%$ Mature | 11 | 538 | 1276 |



Figure 19: Proportion of male lake trout mature versus age for NER.

Table 7: Maturity schedule for male lake trout in NER by age, length, and weight.

| Proportion Mature | Age (years) | Total Length (mm) | Weight (g) |
| :--- | :--- | :--- | :--- |
| 10\% Mature | 2 | 286 | 168 |
| $50 \%$ Mature | 6 | 383 | 531 |
| 90\% Mature | 11 | 514 | 1346 |

The length distribution and maturity schedules presented will provide the basis for the protection of spawning stock, should size based harvest control be warranted.

## 6.0 - The Quadrant Approach

Criteria to evaluate the status of a population of lake trout lakes at a landscape scale are presented in Lester and Dunlop (2004). Maximum sustained yield (MSY) is viewed as a threshold not to be exceeded, and reference points or benchmarks for expected abundance and sustainable fishing pressure at MSY are calculated for a given lake based on the Shuter et al. (1998) exploitation model (Appendix 3). Current estimates of fishing effort and lake trout abundance are required for comparison to the reference points established. Section 3.1 presents a summary of the methods used in estimation of annual angler effort. Additional detail regarding formulas etc. can be obtained through a review of Lester et al. (1991), McGuiness et al. (2000), and Lester and

Dunlop (2004). A combination of SLIN and Nordic data was used to characterize lake trout abundance on a representative set of lakes. Janoscik and Lester (2003) provide a method for conversion of SLIN CUE to estimated lake trout density, whereas a separate formula was developed for conversion of Nordic CUE data to density (Appendix 8). The balance of the benchmarking process was identical between the two netting methods.

Lester and Dunlop (2004) recommend a plot of Log (observed abundance / expected abundance at MSY) against Log (observed effort / sustainable effort at MSY) as a means to characterize four stages of fishery status or health (Figure 20).


Figure 20: Categorization of lake trout lakes - the quadrant approach.

- Quadrant 1 (healthy): Good lake trout abundance and sustainable fishing pressure. Abundance can be expected to remain high providing fishing pressure remains low.
- Quadrant 2 (early over-fishing): Good lake trout abundance but fishing pressure above sustainable benchmark. A transient state - abundance can be expected to decline if fishing pressure remains high.
- Quadrant 3 (over-fished): Lake trout abundance has declined and fishing pressure remains above sustainable benchmark. A high risk scenario - population heavily stressed, stock extinction could result if angler effort is not reduced.
- Quadrant 4 (degraded): Lake trout abundance and current fishing pressure both low - status likely related to past over-fishing. If fishing pressure remains low one might expect gradual stock recovery. However, habitat limitations and introduced species may slow or even prevent lake trout recovery.

It should be noted that application of the Shuter et al. (1998) exploitation model to NER lakes warrants further consideration. Appendix 9 presents some extended discussion regarding use of the model and the relevance of certain intrinsic assumptions to the analysis presented below.

## 7.0 - NER Quadrant Analysis

## 7.1-The SoR Dataset

The dataset used for the NER quadrant analysis included a combination of 90 randomly selected lakes and 40 reasonable additions. It should be noted that 16 randomly selected lakes were either omitted from the survey schedule or the quadrant analysis or both. These included: 9 acid damaged lakes either known to be presently void of lake trout or where preliminary restoration efforts were underway; 5 put-grow-take lakes; and 2 lakes not presently managed for lake trout. The dataset was expanded to include 40 reasonable lake additions where required index netting and effort data was found to be available and where no known limitations to lake trout abundance beyond fishing pressure were identified. The final dataset only included lakes classified as selfsustaining (N1, I1, R1) and lakes presently being stocked on a supplemental basis (N3). As such, the results of the quadrant analysis should be considered representative of the corresponding lake classifications in the full regional dataset (specifically, 680 self-sustaining lakes +16 lakes being stocked on a supplemental basis).

Prior to proceeding with full analysis of the quadrant output, the expanded dataset was compared to the random dataset to ensure that the additions were valid and that the expanded set of lakes was representative of the range of conditions in NER. No significant difference was detected between the expanded dataset and the random dataset in the distribution of lakes across the four quadrants (Chi-square test: $\chi^{2}{ }_{3}=0.35, \mathrm{P}>0.05$; Figure 21) validating use of the full 130 lake set.


QQuadrant 1 图Quadrant 2 Q Quadrant 3 Quadrant 4
Figure 21: Distribution of lakes across the four quadrants - comparing an expanded 130 lake set (All Lakes) with 90 randomly selected lakes.

Potential differences between the two netting standards employed were also explored - i.e. Nordic versus SLIN results. Mean values for estimated density of mature fish were virtually identical between the two netting methods ( 2.6 adults per hectare, $\mathrm{n}=57$ for SLIN; 2.5 adults per hectare, $\mathrm{n}=73$ for Nordic). A student's t-test confirmed no significant difference between mean values of density calculated using the two methods $\left(\mathrm{t}_{128}=0.53, \mathrm{P}=0.60\right)$. This would seem encouraging; however, a chi-square test did reveal a significant difference in the distribution of lakes across the quadrants by survey type $\left(\chi^{2}{ }_{3}=11.335, P=0.01\right.$; Figure 22). There were disproportionately more Nordic lakes in Quadrant 4, fewer Nordic lakes in Quadrant 2. This result may be more an artifact of geography rather than bias associated with index netting standard. Lakes around Sudbury were more often assessed using the Nordic method whereas lakes around Sault Ste. Marie were more often assessed using the SLIN method. As explored in Section 7.3, lakes in SSM District appear more often in Quadrant 2, whereas lakes in Sudbury District appear more often in Quadrant 4.


Figure 22: Distribution of lakes across the four quadrants comparing lakes assessed using the Nordic method with lakes assessed using the SLIN method.

## 7.2 - The Current Status of Lake Trout Resources in NER

A representative sample of 130 lakes including 90 random SoR selections and 40 valid additions provides a solid basis to explore the status of NER lake trout populations. Appendix 10 presents a summary of key parameters generated in completion of the quadrant analysis. Figure 23 provides a snapshot of the overall status of lake trout populations in NER using the quadrant plot. As an alternate way to view the quadrant results, the scatter of points was converted into an ellipse using a standard deviational tool in a GIS environment. Standard deviational ellipses are based on the x , y distribution of a point theme having major and minor axes which match the standard deviations of the x and y coordinates of the points. The ellipse generated is rotated to fit the slope of the distribution. Figure 24 presents the results of the NE quadrant analysis using a standard deviational ellipse making it easier to visualize the actual distribution of points on the quadrant plot.


Figure 23: Current status of NER lake trout populations - expanded lake set (130 lakes).


Figure 24: Status of NER lake trout populations demonstrated using a deviational ellipse.

Table 8 summarizes the breakdown of lakes by Quadrant. Only $16.9 \%$ of the lakes sampled can be characterized by abundant lake trout and sustainable fishing pressure. An additional $15.4 \%$ of the lakes sampled are characterized by good lake trout abundance but are presently being overfished, and lake trout abundance can be expected to decline. A further $26.9 \%$ of the lakes sampled are best described as over-fished: abundance has declined and fishing pressure remains high. Finally, a full $40.8 \%$ of the lakes sampled are classified as degraded: both abundance and fishing pressure are presently low.

Table 8: Breakdown of NER lake trout lakes by SoR Quadrant.

| Quadrant | Number of Lakes | \% by Lake Count |
| :--- | :--- | :--- |
| 1 = Healthy | 22 | 16.9 |
| 2 = Early Over-Fishing | 20 | 15.4 |
| 3 = Over-Fished | 35 | 26.9 |
| 4 = Degraded | 53 | 40.8 |

In theory, given low fishing pressure, the lake trout populations in Quadrant 4 should recover. However, a number of factors can interfere with recovery. Where past over-harvest is responsible for reduced abundance levels, residual angler interest can prevent recovery. Other factors which can potentially interfere with recovery include habitat degradation and fish community complication. Such factors are difficult to address and some of the lakes in Quadrant 4 may never recover.

## 7.3 - Spatial Trends in Resource Status

Differences in resource status become apparent when the SoR data is grouped by District (Table 9).

Table 9: Quadrant breakdown by District.

| District | Total \# of lakes assessed (n) | Quadrant 1 | Quadrant 2 | Quadrant 3 | Quadrant 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| North Bay | 27 | $1(3.7 \%)$ | $5(18.5 \%)$ | $10(37.0 \%)$ | $11(40.7 \%)$ |
| Sudbury | 30 | $6(20.0 \%)$ | $0(0.0 \%)$ | $8(26.7 \%)$ | $16(53.3 \%)$ |
| SSM | 50 | $7(14.0 \%)$ | $15(30.0 \%)$ | $13(26.0 \%)$ | $15(30.0 \%)$ |
| Wawa | 8 | $2(25.0 \%)$ | $0(0.0 \%)$ | $3(37.5 \%)$ | $3(37.5 \%)$ |
| Chapleau | 3 | $1(33.3 \%)$ | $0(0.0 \%)$ | $1(33.3 \%)$ | $1(33.3 \%)$ |
| Timmins | 6 | $1(16.7 \%)$ | $0(0.0 \%)$ | $0(0.0 \%)$ | $5(83.3 \%)$ |
| Kirkland Lake | 6 | $4(66.7 \%)$ | $0(0.0 \%)$ | $0(0.0 \%)$ | $2(33.3 \%)$ |
| NER | 130 | $22(16.9 \%)$ | $20(15.4 \%)$ | $35(26.9 \%)$ | $53(40.8 \%)$ |

For statistical analysis, data from Kirkland Lake, Timmins, Chapleau, and Wawa Districts were pooled into a Northern Districts group (to increase sample size). A chi-square test revealed a significant difference in the distribution of lakes across the quadrants by District ( $\chi^{2}{ }_{9}=28.252, \mathrm{P}$ $=0.001$ ). Specifically, there are disproportionately more degraded or Quadrant 4 lakes in

Sudbury (53.3\%) than in either SSM (30\%) or North Bay (40.7\%). Similarly, there are disproportionately more lakes which meet the abundance benchmark (Quadrants 1 and 2 combined), in SSM (44.0\%) and in the Northern Districts (34.8\%) than in either Sudbury (20.0\%) or North Bay (22.2\%). Figure 25 demonstrates the shift in resource status between Districts.


Figure 25: Apparent shift in resource status by District.
In summary, Sudbury lakes were found to be mostly degraded, with some improvement observed in North Bay District. SSM lakes were found to be the healthiest ( $44.0 \%$ of SSM lakes were found to meet the abundance benchmark as compared to $32.3 \%$ regionally). Results for northern Districts pooled were similar to the regional breakdown (34.8\% of northern lakes were found meet the abundance benchmark) with fewer lakes in Quadrants 2 and 3 compared to Quadrants 1 and 4 given lower angling pressure. The high proportion of Quadrant 4 lakes in Sudbury District was likely related to the combined impacts of acidification and past exploitation. Somewhat surprising was the high proportion of Quadrant 4 lakes found in the northern Districts (47.8\%). The 11 northern lakes in Quadrant 4 were reviewed individually. Estimated lake trout abundance was found to be reasonable ( 2.0 to 4.0 adults per hectare) and approach the benchmark for 4 of the lakes considered. Lake trout abundance was found to be very low on the remaining 7 lakes ( 0.0 to 0.9 adults per hectare). Potential limiting factors were noted for 5 of these 7 lakes, a common theme being the presence of piscivorous competitors including pike, walleye, and smallmouth bass. While it is recognized that the incidence of walleye and pike in lake trout lakes likely does increase as one moves north within the region, introductions are believed to be at least in part responsible for increased community complication for 3 of the lakes. Although these species naturally coexist with lake trout in many lakes, one can expect lower lake trout
productivity as a result. Water level manipulation was also noted as a potential limiting factor for two of the lakes reviewed.

Potential differences between the proposed new Fisheries Management Zones (FMZ's) in NER were also explored. Estimated adult lake trout density was found to meet or exceed the abundance benchmark on a greater proportion of lakes evaluated in FMZ 10 (33.7\%) than in FMZ 11 (28.1\%); however, a chi-square test did not reveal a significant difference in the distribution of lakes across the quadrants by FMZ ( $\chi^{2}{ }_{9}=5.31, \mathrm{P}>0.05$ ). Conversely, mean adult density was found to be somewhat higher in FMZ 11 (3.3 adults per hectare) than in FMZ 10 (2.4 adults per hectare). Again, a student's t-test indicated that the difference in density between the two FMZ's was not significant ( $\mathrm{t}_{119}=0.91, \mathrm{P}=0.37$ ). Sample sizes for FMZ 7 (6 lakes) and FMZ 8 (3 lakes) prevented valid comparisons of resource status for these FMZ's. In conclusion, based on the SoR data collected, no significant difference in resource status between FMZ's was detected. It is however interesting to note that although mean density would appear to be somewhat lower in FMZ 10, more lakes appear to meet the abundance benchmark reflecting lower theoretical carrying capacity (i.e. lower abundance benchmarks or reference values) on average in FMZ 10. Upon further investigation, a higher mean abundance benchmark in FMZ 11 related to a greater proportion of small bodied lake trout populations. Specifically, $37.5 \%$ of the lakes surveyed in FMZ 11 had $\mathrm{L}_{\infty}<50 \mathrm{~cm}$ whereas only $18.0 \%$ of the FMZ 10 lakes had $\mathrm{L}_{\infty}<50$ cm. As explored in Section 6.0, smaller bodied lake trout populations demonstrate higher expected abundance at MSY.

## 7.4 - Potential Habitat Limitations and Fish Community Interactions

Further to the brief reference in Section 7.2 regarding potential habitat and fish community factors that can limit lake trout abundance, a variety of statistical approaches were applied to explore potential drivers of resource status in NER. Chi-square tests were used to investigate potential differences in the distribution of lakes across the quadrants, t-tests and one way ANOVA were used to compare observed adult densities, and linear regression analysis was used to relate observed adult density to certain quantifiable variables. For all t-tests, ANOVAs, and regressions reported, densities were log transformed to meet parametric assumptions. The specific factors investigated are divided into 3 categories: habitat factors, fish community factors, and residual angler interest. Significant findings are presented below.

### 7.4.1 - Habitat Factors

Lake Size: One way ANOVA revealed a significant difference in observed adult density with lakes blocked by surface area (Figure 26). Specifically, mean adult density was found to be significantly higher on lakes with surface area less than 150 hectares ( 3.5 adults per hectare, n $=59$ ) than on lakes with surface area exceeding 400 hectares ( 1.6 adults per hectare, $\mathrm{n}=35$ ). This trend has been well documented (Payne et al. 1990; Shuter et al. 1998). The differences are in part driven by the SLIN calibration procedure (Appendix 8) which utilizes surface area in conversion of SLIN CUE to estimated density. It should be noted however that a similar trend was revealed using only Nordic density data, where density was calculated independent of surface area. Specifically, although differences were not statistically significant (ANOVA, $\mathrm{F}(2,70)=1.46, \mathrm{P}=0.24$ ), mean adult density as estimated from Nordic CUE was found to be
considerably higher on lakes with surface area less than 150 hectares ( 3.0 adults per hectare, n $=44$ ) than on lakes with surface area exceeding 150 hectares ( 1.8 adults per hectare, $\mathrm{n}=29$ ).


Figure 26: Estimated adult lake trout density with lakes blocked by surface area.
Regardless of any effect surface area may have on lake trout density, the observed distribution of lakes across the 4 quadrants was not found to vary significantly with the lakes blocked by surface area. Abundance reference points calculated via application of the equations presented in Appendix 3 depend on $\mathrm{L}_{\infty}$, which is correlated with surface area. Resource status as determined through comparison of estimated abundance to lake specific abundance benchmarks or reference points would not be expected to vary with surface area.

Thermal Habitat Availability: There are two accepted measures of late summer habitat availability: thermal habitat volume or THV (Payne et al. 1990) and mean volume weighted hypolimnetic dissolved oxygen or MVWHDO (Evans 2005). Unfortunately, both approaches require data not readily available for all of the SoR lakes, so two alternative indices were selected to investigate the potential effect of late summer habitat limitations on the quadrant results: maximum depth and predicted thermal habitat volume as a proportion of total lake volume ( pV ). Predicted pV values were calculated by Nigel Lester (personal communication) for all 130 SoR lakes using a modified version of the predictive model of optimal habitat boundaries presented by Dillon et al. (2003). Both regression analysis and t-tests were used in an attempt to relate observed densities to either maximum depth or pV. Surprisingly, neither approach revealed a significant relationship between observed adult density and predicted thermal habitat availability. In fact, density would appear to be somewhat higher in shallow lakes ( 2.9 adults per hectare where max depth is less than 25 m versus 2.4 adults per hectare where maximum depth exceeds 25 m ) and lakes with low pV ( 3.0 adults per hectare where pV is less than 0.1 versus 2.4 adults per hectare where pV exceeds 0.1 ), an observation likely linked to surface area. Large lakes are typically deep and as discussed above support lower estimated densities.

Acidification: The potential relationship between current pH and observed adult density was not investigated; however, the spatial trends in resource status noted in Section 7.3 (Figure 25) would suggest that the impact of past and residual acid damage is playing a role in NER, where the majority of lakes in proximity to Sudbury are in Quadrant 4. The impacts of acidification are discussed in detail in Section 8.0. One hundred northeastern lake trout lakes were severely impacted by acidification linked to atmospheric deposition of metal smelter emissions and surface drainage of mine tailings. The majority of these lakes are located SE and NW of Sudbury. While extirpation / degradation was only documented on this specific lake set, additional lakes may very well have been stressed to the point that current lake trout carrying capacity may be compromised as a result of past recruitment failure, subsequent shifts in native fish community structure, and the introduction of non-native species such as smallmouth bass and walleye.

Water Levels: Table 10 provides a breakdown of lakes by quadrant with and without water level manipulation.

Table 10: Breakdown of lakes by quadrant with and without water level manipulation.

| Quadrant | Lakes without Drawdowns |  | Lakes with Drawdowns |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Lake Count | \% by Quadrant | Lake Count | \% by Quadrant |
| 1 = Healthy | 22 | 18.8 | 0 | 0.0 |
| 2 = Early Over-Fishing | 19 | 16.2 | 1 | 7.7 |
| 3 = Over-Fished | 26 | 22.2 | 9 | 69.2 |
| 4 = Degraded | 50 | 42.7 | 3 | 23.1 |
| TOTAL | 117 |  | 13 |  |

Chi-square analysis was not used to test for significant variation in the distribution of lakes by quadrant given the low sample size for lakes with draw downs. It is interesting to note however that lake trout abundance was found to be below the abundance benchmark for 12 of the 13 lakes with draw downs and that a student's t-test revealed a significant difference in mean observed density between lakes with and without draw downs ( $\mathrm{t}_{128}=2.61, \mathrm{P}=0.01$ ). Lake trout densities would appear to be significantly lower on lakes with draw downs (0.9 adults per hectare, $\mathrm{n}=13$ ) than on lakes without draw downs ( 2.7 adults per hectare, $\mathrm{n}=117$ ). It must be recognized however that there is nearly an order of magnitude difference in sample sizes and the results of the t-test are questionable. One also needs to consider the fact that lakes with draw downs are typically larger, supporting more complex fish communities and tend to be more accessible. It is not possible to tease out the contribution of these various factors to the low densities documented. Although we cannot flag any statistically valid findings around water levels, it should be recognized that there is some indication that water level manipulation may be playing a role.

### 7.4.2 - Fish Community Factors

Species Richness: Regression analysis was used to explore the potential relationship between species richness (i.e. the total number of species present) and observed lake trout density. The analysis revealed a significant decrease in adult lake trout abundance with increasing species
richness $\left(r^{2}=0.035, \mathrm{P}=0.03\right)$. Lake trout are adapted to the deep, cold, well-oxygenated lakes typically characterized by low nutrient availability and relatively simple fish communities. In a pristine community, lake trout often represent the sole top predator. The presence of other competitive piscivorous species will result in reduced resources available for any single species. Moreover, when the dataset was split into lakes below the abundance benchmark versus lakes above the abundance benchmark, a significant decline in abundance was only observed for populations falling below the abundance benchmark (Figure 27).


Figure 27: The effect of increasing species richness on estimated adult lake trout density for populations falling below the expected abundance reference point.

Perhaps a combination of high species richness and lake trout exploitation is a recipe for long term degradation. Alternately, lake trout density may be more related to the presence / absence of certain key species than to overall species richness. Higher species richness among populations which meet the lake trout abundance benchmark might be accounted for by an increased number of benign cyprinid species which would not be expected to negatively affect lake trout population health.

Presence / Absence of Key Species: Further to the discussion regarding general community complication presented above, clearly some species (e.g. centrarchids) would have a greater expected impact on lake trout abundance than others (e.g. cyprinids). T-tests and chi-square analysis were used to explore the potential affect that the presence of rock bass, smallmouth bass, coregonids, and rainbow smelt may have on lake trout density and in turn resource health in NER.

Surprisingly, no significant density effects were observed for lakes with and without rockbass. Current research suggests that rockbass can have a significant negative impact on lake trout production (Brown 2003). Smallmouth bass were found to have a very clear impact on lake trout abundance and resource status in NER. A student's t-test revealed a significant decrease in lake trout abundance in the presence of smallmouth bass ( $\mathrm{t}_{128}=3.93, \mathrm{P}<0.001$ ), a result that holds true for both netting standards employed (Figure 28).


Figure 28: Estimated adult lake trout density with and without the presence of smallmouth bass.
Chi-square analysis in turn revealed disproportionately more healthy (Quadrant 1) lakes without smallmouth bass ( $\chi^{2}{ }_{3}=10.997, P=0.012$; Figure 29) and Figure 30 demonstrates a clear shift downwards on the quadrant plot in the presence of smallmouth bass.

©Quadrant 1 图Quadrant 2 Quadrant 3 : Quadrant 4

Figure 29: Distribution of lakes across the SoR quadrants with and without smallmouth bass.


Figure 30: A negative shift in resource status in the presence of smallmouth bass.
A reduction in the availability of forage fish following bass introductions has been shown to have adverse impacts on native top predators, including the lake trout, which rely on littoral prey fish (Vander Zanden et al. 1999). It has been further suggested that lakes lacking pelagic forage fish are most vulnerable to the impacts of bass introductions (Vander Zanden et al. 2004). Where pelagic fish species are present (smelt, whitefish, herring) lake trout are buffered somewhat from the impacts of bass on littoral prey fish populations. In lakes lacking pelagic prey fish, lake trout are more linked to the littoral food web through consumption of near shore forage fishes. Given the apparent impact of smallmouth bass on lake trout production, an effort was made to assess the rate at which the species is spreading on the landscape. A total of 108 lake trout lakes in NER have both original lake survey (AHI) netting records and updated Nordic netting records. Current presence / absence of bass was compared to the presence / absence of bass at the time of the original lake survey. Smallmouth bass have been introduced in 16 of 108 lakes (14.8\%). If the query is expanded to include rock bass, the introduction rate reaches $24.1 \%$. The introduction rate for another species with a range known to be expanding in NER was also evaluated. Walleye have been introduced in 10 of the 108 lakes included in the query (9.3\%). These introduction rates would seem alarming considering the documented impact that such competitive species have on lake trout population health.

The presence of coregonids was also found to have a significant negative effect on lake trout abundance (t-test: $\mathrm{t}_{128}=6.28, \mathrm{P}<0.001$ ), again a result that holds true for both netting standards employed (Figure 31). Although chi-square analysis did not reveal significant variation in the distribution of lakes across the quadrants, Figure 32 demonstrates an apparent shift downwards on the quadrant plot where coregonids are present.


Figure 31: Estimated adult lake trout density with and without the presence of coregonids (i.e. lake herring and / or whitefish).


Figure 32: A negative shift in resource status in the presence of coregonids.
The apparent decline in resource status associated with the presence of coregonids is not as easily explained as the shift associated with the presence of smallmouth bass. While decreased overall abundance in the presence of coregonids is to be expected (Carl et al. 1990), the equations applied in calculation of the abundance reference points or benchmarks used should theoretically account for this given that $\mathrm{L}_{\infty}$ was estimated from actual lake trout length distributions. Specifically, a higher $\mathrm{L}_{\infty}$ can be expected where coregonid species are present as forage. A higher $\mathrm{L}_{\infty}$ in turn lowers the reference point for expected abundance (see Section 6.0) and should in theory balance off the reduction in observed abundance (i.e.
resource status would not necessarily change) unless other factors are at play. Two possible explanations for the apparent shift in resource status come to mind. Perhaps the yield equations applied do not fully account for the expected reduction in abundance associated with the larger bodied lake trout growth form. A more likely explanation would be that larger bodied lake trout populations are more sensitive to exploitation than then are smaller bodied populations which would explain a decline in current resource status where coregonids are present. This scenario is not unreasonable given that larger bodied lake trout are found in lower numbers and that coregonids not only serve as a forage species but also compete with young lake trout. As explored in greater detail in Section 8.1.2, abundant lake herring populations have clearly been shown to restrict the survival and growth of stocked lake trout (Powell et al. 1986; Gunn et al. 1987; Evans and Olver 1995; Gunn and Mills 1998). As a large bodied population is fished down, coregonids become more abundant increasing competition with young native lake trout and causing a downward spiral of the lake trout population (Powell and Carl 2004). It would be more difficult for a depleted population of large bodied lake trout to recover given increased coregonid abundance.

Finally, although the presence / absence of rainbow smelt was not found to have a significant effect on estimated lake trout abundance, chi-square analysis revealed disproportionately fewer degraded (Quadrant 4) lakes and disproportionately more lakes which meet the abundance benchmark (Quadrants 1 and 2 combined) where smelt are present (Figure 33).

© Quadrant 1 Quadrant 2 Q Quadrant 3 Quadrant 4
Figure 33: Distribution of lakes across the four quadrants with and without rainbow smelt.
It should be noted that the sample size for lakes with smelt was low ( $\mathrm{n}=13$ ) compared to lakes without smelt $(\mathrm{n}=117)$ and that the validity of the chi-square result is questionable. The finding however is supported by a suggestion made by Vander Zanden et al. (2004) that the presence of pelagic forage fish can buffer lake trout populations from the impact of bass and other piscivorous competitors on littoral prey fish abundance. A smelt influence is also supported by the fact that the smelt lakes sampled were more accessible, experienced more effort, and had higher incidence of centrarchids than the lakes without smelt, all factors which
should in theory result in poorer resource status. Given that smelt represent abundant pelagic forage heavily utilized by lake trout where present, it is not unreasonable to expect that smelt would mitigate the normal loss of resources available to lake trout accompanying increasing community complication and/or the presence of littoral zone competitors like smallmouth bass - a common denominator in many degraded lakes. In essence, the presence of smelt may make it less likely that a lake trout population would be unable to recover from low abundance.

### 7.4.3-Residual Angler Interest

Where past exploitation is responsible for reduced lake trout abundance, residual angler interest can present a barrier to population recovery. Anglers eventually lose interest in a fishery given poor returns, however, as abundance on historically exploited lakes increases and catches improve, a resurgence of angler interest can be expected. Linear regression analysis was used to relate documented angler effort to observed lake trout density, with the dataset split into lakes with observed lake trout density below the abundance benchmark versus lakes above the abundance benchmark (Figure 34).


Figure 34: The effect of increasing adult lake trout density on angler effort for populations falling below the expected abundance reference point.

For lakes below the abundance benchmark, angler effort was found to be positively correlated with observed lake trout density, that is, angler interest would indeed appear to be density dependant. Regardless of whether the fish community factors explored in Section 7.4.2 are at play or not, over-fished (Quadrant 3) and degraded (Quadrant 4) lakes may never recover without additional harvest control.

## 8.0 - Status and Recovery of Acid Damaged Lake Trout Populations in NER

Based on the SoR analysis presented in Section 7.3, acidification continues to be a primary driver of resource status in NER as evidenced by the high number of degraded lakes in proximity to Sudbury. One hundred lake trout lakes in NER are on record as severely impacted by acidification linked to atmospheric deposition of metal smelter emissions and surface drainage of mine tailings. The majority of these damaged lakes lie northeast and southwest of Sudbury. Two
other smaller groupings of damaged lakes have been identified: lakes impacted by historic uranium mining in the Elliot Lake area and lakes impacted by historic smelting activities near Wawa. A few scattered lakes were also severely affected (e.g. Grey Owl and Kirk Lakes) with impacts related to landscape sensitivity (i.e. bedrock characteristics) rather than to any particular point source of industrial pollution, highlighting the fact that deposition of pollutants was widespread across the northeast landscape.

Substantial effort has been made to reverse damage related to acid-forming SO2 emissions in Ontario. Emissions from the Sudbury smelters have been reduced by $90 \%$ resulting in increasing pH values and decreasing metal concentrations in the area (Keller et al. 2001). Sulphate deposition now appears to be dominated by the effects of continent-wide distribution of air pollutants rather than by local point sources (Snucins et al. 2001). Chemical recovery rates have slowed considerably, suggesting that further attention be paid to broad scale pollution reduction in both the United States and Canada (Gunn and Mills 1998). Reductions beyond currently legislated levels will likely be needed if full recovery of all acid-damaged lakes in sensitive areas like Killarney is to occur (Snucins et al. 2001).

Water quality of NER lake trout lakes is clearly recovering (Figure 35). Further recovery is required and impacts to fish communities remain an issue.


Figure 35: Chemical recovery of 74 acid damaged lake trout lakes in the Sudbury basin.
Note the pH category classed as marginal ( pH 5.0 to 5.5). Lake trout reproductive failure resulting from mortality of early life changes normally occurs as pH declines below a pH of 5.5 ; however, direct adult mortality does not normally occur until pH approaches or declines below 5.0. Where pH declines to a point below 5.5 but remains above 5.0 , continual reproductive failure can eventually result in extirpation (Gunn and Mills 1998).

Chemical recovery rates depend on physical lake characteristics, location within a catchment basin, and the nature of eroding bedrock in the area. Lakes with high ratios of watershed area to lake area or volume have fast flushing rates and generally recover quicker (Keller et al. 2001). Lake trout lakes, especially large deep headwater lakes (e.g. Nellie Lake), recover very slowly given long flushing times (Gunn and Mills 1998).

Through implementation of the northeast lake trout project, an effort has been made to update current knowledge regarding the status of acid damaged lakes in NER. Updated water quality data was collected in 2000 / 2001 and is presented in Appendix 11. Updated fish community data was collected using the Nordic netting standard to evaluate $50+$ lakes where pH was found to exceed or approach the accepted threshold for lake trout ( pH 5.5 ) and is presented in Appendix 12. Refer to Snucins (2000, 2001, and 2002) for a more detailed lake by lake summary of the Nordic data collected. These companion reports also present relevant historical information and recommended restoration strategies for the lakes evaluated. For further information regarding the history and status of acid damaged lakes in Sudbury and North Bay Districts refer to Polkinghorne and Gunn (1981) and McCrudden (1993). Appendix 13 provides supplemental information assembled regarding damaged lakes in Wawa, Sault Ste. Marie, and Sudbury (Espanola Area) Districts.

Table 11 presents a listing of 100 acid damaged lakes including relevant information regarding location and physical characteristics as well as current pH and stock status. The lakes listed are grouped by District and ordered by ascending pH with values colour coded as to suitability for lake trout: red = too acidic for lake trout ( $\mathrm{pH}<5.2$ ); yellow = marginal - lake trout if present should survive and grow but will not reproduce ( pH 5.2 to 5.49 ); green = suitable for lake trout survival and reproduction (pH 5.5 or greater). The following lakes have been removed from previous lists of acid damaged lake trout lakes in NER.

- Low Lake (Sudbury District): A well buffered lake not affected by pH depression. Lake trout have been reduced to a remnant population with exploitation and introduced species being the likely factors involved. Emigration from Helen Lake at high water levels may very well have been largely responsible for historic lake trout records.
- De Lamorandiere Lake (Sudbury District): With a maximum depth of 7.6 m and a mean depth of 2.0 m it is highly unlikely that this lake ever supported a self-sustaining lake trout population.
- Barbara Lake (SSM District): District has questioned historic evidence of lake trout presence; considered to be a brook trout lake.
- Kwagama, Andre, and West Andre Lakes (Wawa District): District has questioned historic evidence of lake trout presence; all three are managed as brook trout lakes. It is also believed that Little Agawa Lake was originally a brook trout lake; however, lake trout were stocked in 1991 and are presently self-sustaining.
- Marjory Lake (Wawa District) - District has questioned historic evidence of lake trout presence.

Table 11: Acid damaged lake trout lakes in NER including relevant locational information, physical parameters, current pH , and stock status listed by District in ascending order of measured pH ( pH values colour coded: red = acid; yellow = marginal; green = suitable for lake trout).

| District | Lake Name | Township | WBYLID | Latitude | Longitude | Surface <br> Area (ha) | Maximum Depth (m) | Mean Depth (m) | pH (year) | Stock Status | Nordic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kirkland Lake | Lady Sydney | Leo | 17-5599-52502 | 472413 | 801220 | 232.3 | 25.6 | 7.4 | 6.15 (2000) | N1 | 2001 |
| North Bay | Landers | Selby | 17-5390-52352 | 471623 | 802841 | 107.4 | 24.0 | 4.9 | 5.00 (2004) | E |  |
| North Bay | Justin | Coleman | 17-5838-52437 | 472046 | 795330 | 38.6 | 32.0 | 6.4 | 5.21 (2000) | R2 |  |
| North Bay | Jerry | Gamble | 17-5263-52458 | 472201 | 803911 | 53.3 | 35.0 | 10.7 | 5.33 (2004) | R2 | 2002 |
| North Bay | Florence | Parker | 17-5335-52315 | 471428 | 803358 | 1021.8 | 38.1 | 7.5 | 5.35 (2000) | R2 | 2000 |
| North Bay | Grays | Whitson | 17-5467-52535 | 472607 | 802248 | 179.0 | 15.7 | 5.9 | 5.37 (2004) | R2 | 2001 |
| North Bay | Jim Edwards | Selby | 17-5431-52386 | 471806 | 802551 | 88.6 | 22.6 | 8.7 | 5.45 (2000) | R1 | 2002 |
| North Bay | Banks | Trethewey | 17-5452-52595 | 472903 | 802401 | 304.3 | 29.3 | 10.0 | 5.52 (1977) | N1 |  |
| North Bay | Marina | Corley | 17-5258-52493 | 472352 | 803931 | 38.2 | 16.8 | 4.6 | 5.59 (2000) | R2 | 2001 |
| North Bay | Bluesucker | Dundee | 17-5298-52239 | 471010 | 803624 | 147.7 | 21.4 | 7.3 | 5.70 (2000) | N1 | 2000 |
| North Bay | Rodd | Dundee | 17-5274-52242 | 471022 | 803816 | 31.8 | 17.0 | 5.1 | 5.81 (2000) | N1 | 2001 |
| North Bay | Turner | Cole | 17-5695-52367 | 471657 | 800452 | 136.1 | 25.6 | 9.2 | 5.82 (1993) | N1 | 2001 |
| North Bay | Linger | Seagram | 17-5367-52152 | 470531 | 803055 | 72.1 | 18.0 | 3.1 | 5.85 (2000) | N1 | 2002 |
| North Bay | Benner | Dundee | 17-5288-52236 | 471002 | 803714 | 58.1 | 26.0 | 8.8 | 5.95 (2004) | N1 | 2001 |
| North Bay | Bull | Turner | 17-5317-52165 | 470613 | 803457 | 105.1 | 21.0 | 7.8 | 6.12 (2000) | N1 |  |
| North Bay | Smoothwater | Corley | 17-5243-52488 | 472344 | 804048 | 909.6 | 88.4 | 31.4 | 6.15 (1996) | N1 |  |
| North Bay | Gullrock | Brigstocke | 17-5804-52398 | 471833 | 795609 | 225.8 | 12.7 | 4.1 | 6.20 (2000) | R2 |  |
| North Bay | Dees | Mcgiffin | 17-5371-52429 | 472025 | 803031 | 81.0 | 14.0 | 4.6 | 6.22 (2000) | R2 | 2002 |
| North Bay | Makobe | Trethewey | 17-5430-52549 | 472644 | 802513 | 2015.8 | 22.6 | 5.8 | 6.25 (2000) | N1 |  |
| North Bay | Barter | Cole | 17-5674-52374 | 471720 | 800625 | 116.7 | 32.3 | 14.4 | 6.48 (2004) | N1 | 2002 |
| North Bay | Sugar | Dane | 17-5670-52431 | 472015 | 800634 | 230.1 | 26.5 | 8.0 | 6.60 (1983) | N1 | 2001 |
| North Bay | Anima Nipissing | Banting | 17-5827-52344 | 471537 | 795414 | 1929.2 | 76.2 | 13.7 | 6.98 (2004) | N1 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| SSM | Grey Owl | Runnalls | 16-7118-52382 | 471550 | 841210 | 199.8 | 31.1 | 6.7 | 5.52 (2001) | R2 | 2000 |
| SSM | Kirk | Lecaron | 17-3414-51701 | 464004 | 830425 | 59.1 | 21.9 | 9.5 | 5.86 (2001) | R2 | 2001 |
| SSM | Quirke | Buckles | 17-3810-51468 | 462923 | 823307 | 2072.7 | 104.0 | 38.7 | 5.94 (2001) | R1 |  |
| SSM | May | Joubin | 17-3852-51434 | 462556 | 822902 | 329.9 | 47.0 | 14.3 | 6.14 (1983) | R1 | 2002 |
| SSM | Pecors | Joubin | 17-3872-51356 | 462315 | 822743 | 353.0 | 28.0 | 7.9 | 6.75 (2001) | N1 |  |
| SSM | Nordic | Esten | 17-3782-51358 | 462144 | 823608 | 122.6 | 27.0 | 9.9 | 7.00 (1987) | R |  |
| SSM | McCabe | Joubin | 17-3797-51421 | 462524 | 823357 | 174.9 | 25.2 | 9.3 | 7.01 (2004) | R1 | 2002 |
| SSM | Hough | Joubin | 17-3851-51403 | 462432 | 822939 | 163.2 | 29.9 | 8.9 | 7.14 (2001) | R |  |
|  |  |  |  |  |  |  |  |  |  |  |  |


| District | Lake Name | Township | WBYLID | Latitude | Longitude | Surface Area (ha) | Maximum Depth (m) | Mean Depth (m) | pH (year) | Stock <br> Status | Nordic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sudbury | Nellie | Roosevelt | 17-4594-51088 | 460800 | 813132 | 248.0 | 54.9 | 19.2 | 4.61 (2001) | E |  |
| Sudbury | Lake \# 37 | Aylmer | 17-5216-51920 | 465231 | 804237 | 34.1 | 19.0 | 7.9 | 4.72 (2000) | E |  |
| Sudbury | Ruth-Roy | Carlyle | 17-4806-51039 | 460525 | 811502 | 54.5 | 18.0 | 4.1 | 4.72 (2001) | E |  |
| Sudbury | Franks | Mackelcan | 17-5267-51920 | 465253 | 803840 | 19.8 |  |  | 4.76 (2000) | E |  |
| Sudbury | Dougherty | Demorest | 17-5253-52060 | 470041 | 804001 | 427.8 | 53.4 | 13.3 | 4.81 (2000) | E |  |
| Sudbury | Bonhomme | Aylmer | 17-5216-51846 | 464903 | 804244 | 34.6 |  |  | 4.87 (2000) | E |  |
| Sudbury | O.S.A. | Killarney | 17-4691-51000 | 460312 | 812353 | 279.4 | 39.7 | 12.0 | 4.88 (2001) | E |  |
| Sudbury | Foy | Foy | 17-4809-51809 | 464634 | 811504 | 55.1 |  |  | 4.89 (2000) | E |  |
| Sudbury | Silvester | Mackelcan | 17-5267-51883 | 465029 | 803843 | 56.1 |  |  | 4.93 (2000) | E |  |
| Sudbury | Chief | Tilton | 17-4987-51346 | 462143 | 810102 | 105.2 | 34.0 | 9.9 | 4.95 (2000) | E |  |
| Sudbury | Dewdney | Mcconnell | 17-5254-51902 | 465219 | 803851 | 172.2 | 34.0 | 9.6 | 4.97 (2000) | E |  |
| Sudbury | Burke | Killarney | 17-4630-50974 | 460152 | 812845 | 8.4 | 15.6 | 5.2 | 5.00 (2000) | E |  |
| Sudbury | Potvin | Kelly | 17-5396-51819 | 464730 | 802849 | 48.7 | 62.0 | 27.5 | 5.01 (2000) | E |  |
| Sudbury | Wolf | Mackelcan | 17-5279-51902 | 465110 | 803755 | 87.5 |  |  | 5.02 (2000) | E | 2000 |
| Sudbury | Acid | Killarney | 17-4657-50979 | 460209 | 812637 | 19.7 | 29.0 | 10.9 | 5.05 (2001) | E |  |
| Sudbury | Frederick | Stobie | 17-5228-52091 | 470217 | 804155 | 311.7 | 21.0 | 7.5 | 5.08 (2000) | E |  |
| Sudbury | Rand | Bowell | 17-4885-51790 | 464608 | 810858 | 21.9 |  |  | 5.09 (2000) | E |  |
| Sudbury | Telfer | Telfer | 17-5165-51976 | 465645 | 804718 | 337.0 | 32.9 | 10.4 | 5.10 (2000) | E | 2000 |
| Sudbury | Killarney | Killarney | 17-4723-51015 | 460408 | 812120 | 327.0 | 61.0 | 10.8 | 5.10 (2001) | E |  |
| Sudbury | Lumsden | Killarney | 17-4665-50976 | 460131 | 812559 | 23.8 | 21.8 | 9.0 | 5.15 (2001) | E |  |
| Sudbury | David | Goschen | 17-4776-51097 | 460823 | 811733 | 405.0 | 24.4 | 7.0 | 5.16 (2001) | E |  |
| Sudbury | Wavy | Eden | 17-4923-51272 | 461809 | 810533 | 306.8 | 34.0 | 15.0 | 5.16 (2004) | E | 2004 |
| Sudbury | Colin Scott | Mccarthy | 17-5379-51863 | 464949 | 803013 | 43.5 | 43.0 | 16.6 | 5.20 (2000) | R2 | 2000 |
| Sudbury | Grace | Curtin | 17-4535-51088 | 460800 | 813604 | 47.3 | 17.2 | 6.2 | 5.21 (2000) | E |  |
| Sudbury | Norway | Killarney | 17-4759-51035 | 460514 | 811832 | 63.4 | 33.6 | 15.1 | 5.25 (2001) | E |  |
| Sudbury | Donald | Mccarthy | 17-5370-51830 | 464801 | 803053 | 503.2 | 60.0 | 15.4 | 5.28 (2000) | R2 | 2000 |
| Sudbury | Great Mountain | Hansen | 17-4723-51114 | 460926 | 812134 | 198.5 | 37.5 | 9.9 | 5.29 (2000) | R2 | 2002 |
| Sudbury | Broker | Attlee | 17-5002-51098 | 460842 | 805941 | 97.7 | 24.1 | 9.5 | 5.34 (2000) | R2 | 2000 |
| Sudbury | Chiniguchi | Telfer | 17-5240-51985 | 465612 | 804148 | 1198.3 | 44.2 | 13.6 | 5.34 (2000) | R2 | 2000 |
| Sudbury | Laundrie | Howey | 17-5110-52189 | 470732 | 805116 | 370.5 | 20.4 | 4.9 | 5.42 (2004) | R2 | 2003 |
| Sudbury | Marjorie | Mcconnell | 17-5292-51958 | 465436 | 803714 | 97.5 | 35.0 | 9.3 | 5.44 (2001) | E |  |
| Sudbury | Davis | Mcconnell | 17-5241-52013 | 465741 | 804035 | 35.8 | 14.0 | 5.2 | 5.46 (2000) | R2 | 2000 |
| Sudbury | Three Narrows | Hansen | 17-4670-51065 | 460647 | 812519 | 811.5 | 51.9 | 14.5 | 5.46 (2000) | N1 | 2003 |
| Sudbury | Caswell | Aylmer | 17-5229-51902 | 465151 | 804230 | 39.8 | 24.0 | 7.9 | 5.48 (2000) | R2 | 2002 |
| Sudbury | Stouffer | Turner | 17-5228-52105 | 470357 | 804058 | 145.7 | 17.0 | 4.5 | 5.49 (2000) | R2 | 2000 |
| Sudbury | White Oak | Tilton | 17-5000-51272 | 461756 | 805952 | 273.6 | 43.0 | 14.5 | 5.49 (2000) | R1 | 2003 |
| Sudbury | Matagamasi | Rathbun | 17-5305-51809 | 464626 | 803620 | 1300.8 | 61.0 | 8.7 | 5.51 (2000) | R2 | 2000 |


| District | Lake Name | Township | WBYLID | Latitude | Longitude | Surface <br> Area (ha) | Maximum Depth (m) | Mean Depth (m) | pH (year) | Stock <br> Status | Nordic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sudbury | Parsons | Demorest | 17-5308-52065 | 470049 | 803538 | 39.0 | 10.4 | 2.8 | 5.57 (2000) | E | 2001 |
| Sudbury | MacDonald | Emo | 17-4573-51969 | 465536 | 813336 | 83.1 | 22.0 | 6.0 | 5.68 (2000) | L |  |
| Sudbury | Johnnie (Bushcamp) | Carlyle | 17-4826-51036 | 460513 | 811330 | 342.8 | 33.6 | 10.0 | 5.68 (2004) | R2 | 2001 |
| Sudbury | Barron | Stobie | 17-5152-52045 | 465945 | 804759 | 55.8 |  |  | 5.69 (2000) | E | 2001 |
| Sudbury | Michaud | Tyrone | 17-4821-51845 | 464837 | 811403 | 148.5 | 24.0 | 7.0 | 5.77 (2000) | R1 | 2004 |
| Sudbury | Twin Lakes | Demorest | 17-5304-52013 | 465812 | 803635 | 69.2 |  |  | 5.82 (1987) | N1 |  |
| Sudbury | Bowland | Howey | 17-5120-52145 | 470513 | 805031 | 107.3 | 28.0 | 6.9 | 5.83 (2000) | R1 | 2003 |
| Sudbury | Mickey | Sheppard | 17-5395-51925 | 465306 | 802857 | 70.1 | 19.0 | 6.8 | 5.83 (2000) | N1 |  |
| Sudbury | Lake \# 27 | Kelly | 17-5462-51807 | 464644 | 803155 | 17.3 | 17.0 | 7.6 | 5.86 (2000) | R2 | 2001 |
| Sudbury | Tyson | Sale | 17-4910-51070 | 460701 | 810659 | 1089.1 | 39.6 | 11.9 | 5.91 (2001) | R2 | 2001 |
| Sudbury | Bell | Goschen | 17-4836-51079 | 460742 | 811219 | 217.7 | 26.8 | 8.1 | 5.93 (2001) | R2 | 2001 |
| Sudbury | Edna | Mccarthy | 17-5381-51884 | 465007 | 802941 | 27.2 | 16.0 |  | 5.96 (2000) | E |  |
| Sudbury | Elboga | Muldrew | 17-4518-52073 | 470113 | 813809 | 27.2 | 16.2 | 5.9 | 6.01 (2000) | R2 | 2002 |
| Sudbury | Lower Matagamasi | Mccarthy | 17-5393-51873 | 465010 | 802904 | 132.1 | 18.0 | 6.9 | 6.05 (2000) | R2 | 2000 |
| Sudbury | George | Killarney | 17-4690-50971 | 460150 | 812401 | 188.9 | 36.6 | 16.4 | 6.05 (2001) | R2 | 2001 |
| Sudbury | Rawson | Mcconnell | 17-5330-51961 | 465503 | 803400 | 164.1 | 26.0 | 5.6 | 6.05 (2004) | N1 | 2003 |
| Sudbury | Whiskey | Gaiashk | 17-3974-51436 | 462623 | 822007 | 992.8 | 55.2 | 22.5 | 6.06 (2001) | R2 | 2002 |
| Sudbury | Fraleck | Fraleck | 17-5089-51954 | 465454 | 805257 | 166.3 | 23.2 | 6.9 | 6.09 (1996) | R2 | 2003 |
| Sudbury | Nook | Lehman | 17-3887-51486 | 462845 | 822632 | 28.0 | 18.0 |  | 6.09 (2001) | R2 | 2000 |
| Sudbury | Chuggin | Kelly | 17-5377-51779 | 464520 | 803024 | 31.4 |  |  | 6.10 (2000) | N1 | 2001 |
| Sudbury | Pedro | Sheppard | 17-5352-51958 | 465459 | 803215 | 63.1 | 11.0 | 6.4 | 6.19 (2000) | R1 | 2004 |
| Sudbury | White Pine | Mcleod | 17-5128-52363 | 471655 | 804950 | 64.3 | 19.0 | 5.6 | 6.21 (2000) | N1 | 2004 |
| Sudbury | Maskinonge | Kelly | 17-5427-51794 | 464625 | 802625 | 1455.7 | 27.4 | 9.6 | 6.28 (2000) | N1 |  |
| Sudbury | Kakakise | Killarney | 17-4750-51010 | 460354 | 811911 | 112.8 | 30.5 | 13.5 | 6.35 (2001) | E | 2001 |
| Sudbury | Kukagami | Kelly | 17-5344-51754 | 464357 | 803303 | 1864.8 | 54.9 | 14.4 | 6.45 (2000) | N1 | 2003 |
| Sudbury | Peter | Goschen | 17-4836-51150 | 461124 | 811250 | 132.7 | 30.5 | 12.9 | 6.62 (2004) | R2 | 2003 |
| Sudbury | Kindle | Lehman | 17-3921-51464 | 462752 | 822418 | 311.3 | 44.2 | 19.7 | 7.03 (2004) | R2 | 2000 |
| Sudbury | Kettyle | Mccarthy | 17-5356-51847 | 464843 | 803218 | 59.8 | 23.5 | 8.9 | 7.64 (2000) | R1 | 2000 |
| Wawa | Molybdenite | Andre | 16-6520-53237 | 480303 | 845738 | 91.1 | 49.0 | 8.1 | 5.32 (2001) | 12 | 2000 |
| Wawa | Black Beaver | Greenwood | 16-6882-52534 | 472432 | 843022 | 165.3 | 40.0 | 12.1 | 5.79 (2001) | N1 |  |
| Wawa | North Hubert | Larson | 16-6930-52450 | 471949 | 842641 | 32.6 | 37.5 | 12.2 | 5.87 (2001) | N1 |  |
| Wawa | Hubert | Larson | 16-6933-52436 | 471930 | 842630 | 85.0 | 38.0 | 11.3 | 5.91 (2001) | N1 | 2000 |
| Wawa | Little Agawa | Larson | 16-6981-52469 | 472051 | 842235 | 137.9 | 41.5 | 10.9 | 5.93 (2001) | I1 | 2000 |

Note: The most recent pH measurements available are reported in this table. Lakes are sorted by District in ascending order of measured pH . The pH
measurements have been colour coded as to suitability for lake trout: red = too acidic for lake trout (pH < 5.2); yellow = marginal - lake trout if present should survive and grow but will not reproduce ( pH 5.2 to 5.49 ); green = suitable for lake trout survival and reproduction (pH 5.5 or greater).

In summary, Table 12 presents the overall breakdown of lakes by current pH category and Table 13 provides a breakdown by current stock status.

Table 12: Breakdown of Acid Damaged Lake Trout Lakes in NER by pH Category.

| Current pH Category | \# of Lakes |
| :--- | :---: |
| Suitable (pH 5.5 or greater) | 57 lakes |
| Marginal (pH 5.2 to 5.49) | 20 lakes |
| Acidic (pH < 5.2) | 23 lakes |

Table 13: Breakdown of Acid Damaged Lake Trout Lakes in NER by Current Stock Status.

| Status Code | Description | \# of Lakes |
| :--- | :--- | :--- |
| N1 | self-sustaining native populations | 25 |
| I1 | introduced population, presently self-sustaining | 1 |
| R1 | re- introduced population, presently self-sustaining | 9 |
| I2 | introduced population, presently sustained by stocking | 1 |
| R2 | re- introduced population, presently sustained by stocking | 31 |
| R | re-introduced population, present status unknown | 2 |
| E | extinct native population | 30 |
| L | lost population of unknown origin | 1 |

Of the 100 lake trout lakes listed as acid damaged in NER, 25 are presently classed N 1 indicating that native populations survived acidification and are presently self-sustaining. A number of these lakes have been stocked at least once and the potential contribution of stocked fish to the genetic makeup of the current population is uncertain. Native genetic stocks are considered to be fully intact for the following 15 lakes given no recorded lake trout stocking.

| Banks | Bull | Rawson |
| :--- | :--- | :--- |
| Barter | Hubert | Rodd |
| Benner | Linger | Smoothwater |
| Black Beaver | Mickey | Turner |
| Bluesucker | North Hubert | Twin Lakes |

Reproducing populations have been established through hatchery stocking in 10 lakes and restocking of 32 additional lakes is underway. Hough and Nordic lakes in SSM District are classified as re-introduced populations, present status unknown - assessment of these lakes should be given a high priority. Thirty one lakes remain void of lake trout, the majority of which require additional chemical recovery.

## 8.1 - Consideration of Potential Restoration Strategies

### 8.1.1 - Lake Liming

Research has shown that while whole lake liming can produce rapid improvements in water quality, it is a costly option the benefits of which can be short lived (Snucins and Gunn 1992).

The practice was deemed to have limited value for broad application based on experience gained on Bowland Lake (Gunn et al. 1990). This position was restated by Gunn and Mills (1998). Liming has been shown to be effective on a small scale, application across a large landscape would be cost prohibitive.

### 8.1.2 - Stocking to Reestablish Lost Lake Trout Populations

While chemical recovery is well underway in the Sudbury Basin, re-colonization by native plant and animal species depends on the availability of colonists and on mechanisms for overcoming barriers to dispersal (wind, water currents, animal vectors). Repopulation of isolated lakes by less mobile species such as fish and deepwater zooplankton is expected to occur slowly or not at all (Snucins et al. 2001). Natural recovery of a native fish population depends on either the presence of remnant individuals or immigration from adjacent populations. The process of biological recovery can be accelerated by the introduction of hatchery fish or the transfer of wild fish from one waterbody to another.

The composition of fish communities in recovering lakes has been shown to have a significant effect on the success of lake trout restocking efforts. Introduced lake trout often do poorly in species-rich lakes (Snucins and Gunn 2003). Growth and survival of stocked lake trout can be expected to decrease in proportion to the number and density of other species present (Evans and Olver 1995). More specifically, abundant cisco populations appear to greatly restrict the survival and growth of stocked lake trout (Powell et al. 1986; Gunn et al. 1987; Evans and Olver 1995; Gunn and Mills 1998). Reduced lake trout growth and abundance has also been linked to the present of centrarchid species including rockbass and smallmouth bass (Vander Zanden et al. 1999). Such species interactions can be particularly relevant when dealing with restoration of acid damaged waters. One of the most obvious results related to loss of lake trout, a top predator, from an acidifying lake is the existence of large populations of acid tolerant species like the cisco (Kelso \& Gunn 1984). Furthermore, unauthorized introductions of other sportfish species such as smallmouth bass or walleye often occur in advance of lake trout restoration efforts and can limit success. On a more encouraging note, Gunn et al. (1987) did find that survival of stocked fish increases with size at stocking. Planting of larger hatchery products may therefore be an effective strategy in overcoming competitive barriers and restoring community balance.

Lakes were selected for restocking where the following criteria were met: reasonable historic evidence of a native lake trout population; current $\mathrm{pH}>5.2$ (preferably > 5.5); and remnant lake trout not present. The target size of fish to be stocked was determined based on the presence / absence of coregonid and centrarchid populations. Stocking of adult lake trout and advanced culture of a 2 year old hatchery product are being used as alternatives to regular yearling stocking in the face of complex fish communities. Adult transfers (from one lake to another) are both labour intensive and unpalatable to stakeholders interested in the health of the donor rather than the recipient lake. The use of surplus adult broodstock released from the provincial fish culture system was found to be a more practical alternative; however, such products are only sporadically available. The use of broodstock has for the most part been reserved for situations where immediate removal is not anticipated (i.e. where harvest restrictions are in place). A regular, long-term supply of large 2 year old lake trout (mean 150 g compared to 20 g yearlings) is viewed as key to successful restoration of lake trout populations in many damaged lakes.

### 8.1.3 - Multi-Species Stocking to Reconstruct Native Fish Communities

In light of the community related factors explored above, the concept of multi-species introductions would seem risky. Potential consequences outweigh potential benefits at least from the perspective of successful lake trout restoration. Lake trout are known to prey successfully on a variety of organisms, and excellent yields are possible from lakes that have simple food webs and few fish species (Martin and Olver 1980). Furthermore, to a great extent species losses beyond lake trout are poorly documented. Although pre-impact species richness can be estimated, the composition of the original communities would be largely guess work. It is recommended that such strategies not be considered with the possible exception of specific research oriented initiatives where good evidence of historic species composition exists. Should such an undertaking be entertained, Powell and Carl (2004) suggest that a healthy lake trout population should be reestablished prior to reintroduction of other species.

### 8.1.4 - Monitor Natural Recovery Processes

Hatchery stocking was not considered where a reasonable number of native lake trout were found to be present in a lake. Instead, an effort should be made to facilitate natural recovery of the remnant population and the population should be monitored closely. In a few cases, remnant lake trout are present but at extremely low abundance. Under these circumstances, two valid approaches exist: proceed with restocking assuming that it is highly unlikely that the native lake trout population will recover or monitor the remnant population. A non-interference strategy may be appropriate for a limited number of research lakes regardless of whether remnant lake trout are present or not. Snucins and Gunn (1992) have suggested that a limited number of lakes be left to recover on their own and provide the opportunity to study natural recovery processes.

### 8.1.5 - Harvest Control

Angler harvest can be viewed either as a stocking objective or as a barrier to establishment of a self-sustaining population. Stocked lakes can offer excellent recreational opportunities; however, self-sustaining populations are more readily established with angler harvest curtailed (Evans and Olver 1995). Powell and Carl (2004) recommended that where the stocking objective is to develop a self-sustaining population, a lake should be closed to lake trout angling for a sufficient period of time to allow introduced lake trout an opportunity to produce three years of progeny (i.e. to reach age 10). On the other hand, interim closures can present significant management challenges in the long-term as stakeholders eventually expect restored fisheries to be opened. Gunn and Sein (2004) documented a disturbing $72 \%$ removal rate of lake trout in a period of less than 5 months following opening of the Michaud Lake fishery.

Recognizing that there are clearly pros and cons to interim harvest regulation, an attempt has been made to strike a balance between the two stocking objectives (i.e. angling opportunities vs. establishment of self-sustaining populations) with the underlying assumption being that the two objectives are not necessarily mutually exclusive. For many lakes, stocking is ongoing with regular 9 month open seasons recognizing that angling pressure will build concurrent with biomass. It is presumed that sufficient individuals will escape the recreational fishery to establish an age class structure typical of exploited native populations thereby providing an opportunity for natural recruitment should conditions be favorable. The lakes with open seasons tend to fall into

2 categories: large accessible lakes and smaller more remote lakes where stocking events have been intentionally omitted from District stocking lists in the hope that angler interest will be more manageable. In either scenario, reasonable opportunity does exist for stocked lake trout to mature and spawn. For the remaining lakes, harvest control strategies have been applied, ranging from reduced winter lake trout seasons to year round sanctuaries. Given a range of regulatory strategies, and the fact that all background information was collected using a standard protocol (Nordic Netting), a sound framework for future research initiatives has been established.

## 8.2-Selected Restoration Strategies

The final set of restoration strategies selected was limited to lake trout stocking (Table 14) combined with a range of harvest control options (Table 15). Appendix 14 provides a lake by lake summary of both historic stocking and stocking undertaken through implementation of this project. The following hatchery products are being used: spring yearlings (16 lakes), fall yearlings (1 lake), 2 year olds (13 lakes), and adult broodstock ( 5 lakes). In total, nearly 250,000 lake trout were stocked between 2001 and 2005. Note that White Oak Lake is included in Table 14 without an identified restoration strategy. A reproducing lake trout population has already been reestablished (origin - 1996 adult plant). White Oak was intentionally included whereas 8 other lakes with self-sustaining re-introduced populations (R1 lakes, Table 11) were not in order to highlight the fact that White Oak is one of three genetic refugia established to support conservation of rare provincial strains. Should additional stocking be required at some point in the future, only the assigned strains should be used (White Oak Lake - Big Sound strain; Great Mountain Lake - Iroquois Bay strain; Caswell Lake - Kinscote strain). It should also be noted that specific decisions were made not to proceed with lake trout restoration on the following 6 lakes based on the reasons listed.

- Barron Lake (Sudbury District): Presently suitable for lake trout with an extremely low abundance of remnant lake trout present (a single lake trout caught 2001 Nordic). Concern re: potential emigration of hatchery fish to Paradise Lake. May want to consider an adult transfer from Paradise at some point in the future, or, simply allow natural processes to unfold.
- Edna Lake (Sudbury District): Good evidence of historic lake trout presence given it's location in Chiniguichi River system with excellent lake trout populations known to have existed both upstream and downstream prior to acidification. Concern re: emigration of hatchery fish to Maskinonge Lake. Decision made not to proceed with lake trout restoration. Edna Lake provides limited cold water habitat (surface area 28.7ha, 16m maximum depth). The presence of rock bass and absence of deep water forage fishes would further limit potential lake trout productivity. The lake may very well be repopulated via movement of stocked fish from upstream (Matagamasi Lake). Movement of stocked lake trout between lakes was one of the discoveries of early lake trout restoration efforts in Killarney Provincial Park (Snucins and Gunn 2003).
- Kakakise Lake (Sudbury District): Given location in Killarney Provincial Park and the potential presence of remnant lake trout (i.e. a single lake trout caught 2001 Nordic), it was agreed to allow natural recovery processes to unfold and monitor.
- Parsons Lake (Sudbury District): Evidence of historic lake trout presence; however, given marginal habitat conditions (i.e. a maximum depth of 10.4 m ) and the presence of introduced walleye and smallmouth bass, it was decided that a lake trout restoration attempt would prove futile.

Table 14: Lakes Selected for Restoration and Stocking Strategies Established via Northeast Lake Trout Enhancement Project.

| District | Lake | Size <br> (ha) | Access | Recommended Product | Stocking Strategy |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Allocated Product | Number | Frequency* |
| North Bay | Dees | 82 | Road (4X4) | Adults or 2 Year Olds | 2 Year Olds - Killala | 350 | Alternate (2005) |
| North Bay | Florence | 1006.9 | Fixed Wing | Yearlings OK | Yearlings - Killala (completed 2003) | 10,000 | Assess |
| North Bay | Grays | 179.8 | Fixed Wing | Yearlings OK | Yearlings - Killala | 2000 | Alternate (2006) |
| North Bay | Gullrock | 229.4 | Fixed Wing | Yearlings OK | Yearlings - Killala | 2000 | Alternate (2006) |
| North Bay | Jerry | 56.3 | Rotary | Yearlings OK | Yearlings - Killala | 500 | Alternate (2005) |
| North Bay | Marina | 36.9 | Rotary | Yearlings OK | Yearlings - Killala | 500 | Alternate (2005) |
|  |  |  |  |  |  |  |  |
| SSM | Grey Owl | 247.9 | Fixed Wing | Yearlings OK | Yearlings - Mishibishu | 2400 | 2002, 03, 05, 06 |
| SSM | Kirk | 59 | Fixed Wing or Portage | Yearlings OK | Yearlings - Mishibishu | 600 | Alternate (2005) |
|  |  |  |  |  |  |  |  |
| Sudbury | Bell | 347.4 | Road | Adults or 2 Year Olds | Adults - Mishibishu | $\begin{gathered} 255 @ 4.2 \mathrm{~kg} \\ 164 @ 2.4 \mathrm{~kg} \\ \hline \end{gathered}$ | $\begin{aligned} & 2001 \\ & 2003 \\ & \hline \end{aligned}$ |
| Sudbury | Bellows | 274.3 | Fixed Wing | Adults or 2 Year Olds | 2 Year Olds - Killala | 1400 | Alternate (2005) |
| Sudbury | Broker | 81 | Fixed Wing | Adults or 2 Year Olds | Adults (Nordic Calibration) <br> 2 Year Olds - Killala (Regular Product) | 324 Simcoe @ 1.0 kg 460 Simcoe @ 1.5 kg 300 | 2001 2002 Alternate (2002) |
| Sudbury | Caswell | 39 | Rotary | Yearlings OK Genetic Refugia Kingscote Only | Adult - Kingscote | 550 @ 204g | 2002 |
| Sudbury | Chiniguchi | 1295.7 | Fixed Wing | Yearlings OK | Yearlings - Killala | 13,000 | Alternate (2006) |
| Sudbury | Colin Scott | 43.9 | Rotary | Yearlings OK | Yearlings - Killala | 500 | Alternate (2005) |
| Sudbury | Davis | 34.1 | Rotary | Yearlings OK | Adults (Nordic Calibration) <br> Yearlings - Killala (Regular Product) | $\begin{gathered} 136 \text { Simcoe @ } 1.1 \text { kg } \\ 500 \end{gathered}$ | $\begin{gathered} \hline 2001 \\ \text { Alternate (2005) } \end{gathered}$ |
| Sudbury | Donald | 498.2 | Fixed Wing | Yearlings OK | Yearlings - Killala | 5,000 | Alternate (2006) |
| Sudbury | Elboga | 27.9 | Road | Yearlings OK | Adults (Nordic Calibration) <br> Yearlings - Killala (Regular Product) | $\begin{gathered} 228 \text { MP @ } 4.0 \mathrm{~kg} \\ 230 \text { IB @ 3.4kg } \\ 500 \end{gathered}$ | 2003 Alternate (2004) |
| Sudbury | Fraleck | 173.9 | Fixed Wing | 2 Year Olds | 2 Year Olds - Killala | 700 | Alternate (2006) |
| Sudbury | George | 188.5 | Road | Adults or 2 Year Olds | Adults | 330 Slate @ 3.7kg <br> 252 MP @ 2.2kg | $\begin{aligned} & 2002 \\ & 2004 \end{aligned}$ |
| Sudbury | Geneva | 356.1 | Road | Adults or 2 Year Olds | 2 Year Olds - Killala | 1500 | Alternate (2006) |


| District | Lake | Size <br> (ha) | Access | Recommended Product | Stocking Strategy |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Allocated Product | Number | Frequency* |
| Sudbury | Great Mountain | 191.5 | Fixed Wing | Adults or 2 Year Olds Genetic Refugia Iroquois Bay Only | Adults | 190 IB @ 2.95kg 174 IB@ 3.9kg 336 IB @ 740g | $\begin{aligned} & 2001 \\ & 2004 \\ & 2006 \end{aligned}$ |
| Sudbury | Johnnie | 342.3 | Road | Adults or 2 Year Olds | Adults - Michipicoten / Mishibishu | $\begin{gathered} \hline 400 \mathrm{MP} @ 4.5 \mathrm{~kg} \\ 164 \mathrm{ML} @ 2.4 \mathrm{~kg} \end{gathered}$ | $\begin{aligned} & 2001 \\ & 2003 \end{aligned}$ |
| Sudbury | Kelly \#27 | 17.1 | Rotary | Yearlings OK | Yearlings - Killala | 500 | Alternate (2006) |
| Sudbury | Kindle | 311.3 | Fixed Wing | Adults or 2 Year Olds | paired plant (2 Year Olds \& Yearlings) long term - 2 Year Olds - Killala | 1000 2yr /1500 ylgs or 14002 yr olds | Alternate (2005) |
| Sudbury | Laundrie | 370.5 | Fixed Wing | Yearlings OK | Yearlings - Killala | 3500 | Alternate (2005) |
| Sudbury | Lower Metagamasi | 131.8 | Fixed Wing | Adults or 2 Year Olds | 2 Year Olds - Killala | 700 | Alternate (2006) |
| Sudbury | Metagamasi | 1392.7 | Fixed Wing | Yearlings OK | Yearlings - Killala | 14,000 | Alternate (2005) |
| Sudbury | Nook | 27 | Fixed Wing | Adults or 2 Year Olds | 2 Year Olds - Killala | 350 | Alternate (2005) |
| Sudbury | Peter | 131 | Fixed Wing | 2 Year Olds | 2 Year Olds - Killala | 700 | Alternate (2006) |
| Sudbury | Snapshot | 82.5 | Fixed Wing | Adults or 2 Year Olds | 2 Year Olds - Killala | 350 | Alternate (2005) |
| Sudbury | Stouffer | 141 | Fixed Wing | Yearlings OK | 2 Year Olds - Killala | 700 | Alternate (2006) |
| Sudbury | Trout | 929.6 | Road | Adults or 2 Year Olds | 2 Year Olds - Killala | 4000 | Alternate (2006) |
| Sudbury | Tyson | 1142.2 | Road | Adults or 2 Year Olds | Adults <br> 2 Year Olds - Killala (Regular Product) | $\begin{gathered} 590 \text { Slate @ } 1.7 \mathrm{~kg} \\ 187 \text { MP @ } 4.6 \mathrm{~kg} \\ 4500 \end{gathered}$ | 2003 2004 Alternate (2005) |
| Sudbury | Whiskey | 916.6 | Road | Adults or 2 Year Olds | Adults <br> Fall Yearlings - Manitou (Regular Product) | $\begin{gathered} 2178 \text { Slate @ 900g } \\ 6000 \\ \hline \end{gathered}$ | $\begin{gathered} 2001 \\ \text { Alternate (2005) } \end{gathered}$ |
| Sudbury | White Oak | 265.7 | Fixed Wing | Adults <br> Genetic Refugia Big Sound Only | Adults (completed 1996) |  |  |
|  |  |  |  |  |  |  |  |
| Wawa | Molybdenite | 93.6 | Road | Yearlings OK | Yearlings | 1000 | Alternate (2005) |

Notes: *Under frequency, last date stocked included in brackets as a guide to future year alternate stocking.
Two other damaged lakes presently being stocked on a put-grow-take basis by North Bay District: Justin and Bear (Kaotisinimigo) Lakes.
Stocking Rates: 10 ylgs (@ 20g) per hectare at commencement of restoration effort (range 6 to 10 alternate years for sustained stocking) 4 two year olds (@125g) per hectare alternate years
Up to 10 adults per hectare for one shot stocking, fewer for repeat stockings

- McDonald Lake (Sudbury District): Questionable anecdotal evidence of historic lake trout presence. Currently managed as a put-grow-take brook trout lake.
- Telfer Lake (Sudbury District): Not presently suitable for lake trout. F1 Splake were stocked 2001 to 2003 in an effort to provide interim angling opportunities; however, emigration of stocked fish to Paradise Lake was reported and splake stocking was discontinued. Given additional water quality recovery, lake trout stocking should be considered; however, the concern re: emigration of stocked fish to Paradise Lake will remain.

Table 15: Summary of harvest control measures applied to acid damaged lake trout lakes in NER.

| District | Lake | Stock Status | Current Stocking | Regulation |
| :---: | :---: | :---: | :---: | :---: |
| Kirkland Lake | Lady Sydney | N1 | No | $\begin{aligned} & \text { split season - lake trout open Feb } 15 \text { - Mar } 15 \text { \& 3rd } \\ & \text { Sat in May - Sep } 30 \end{aligned}$ |
| North Bay | Florence | R2 | Yes | lake trout closed all year |
| Sault Ste. Marie | Kirk | R2 | Yes | sanctuary - closed Jan 1 to May 30 |
| Sault Ste. Marie | Quirke | R1 | No | catch and release only |
| Sudbury | Acid | E | No | sanctuary - closed all year |
| Sudbury | Bell | R2 | Yes | lake trout closed all year |
| Sudbury | Boland | R1 | No | sanctuary - closed all year |
| Sudbury | Broker | R2 | Yes | lake trout closed all year |
| Sudbury | Burke | E | No | sanctuary - closed all year |
| Sudbury | Caswell | R2 | Yes | lake trout closed Oct 1 to Fri before last Sat in Apr |
| Sudbury | David | E | No | sanctuary - closed all year |
| Sudbury | George | R2 | Yes | sanctuary - closed all year |
| Sudbury | Grace | E | No | sanctuary - closed all year |
| Sudbury | Great Mountain | R2 | Yes | sanctuary - closed all year |
| Sudbury | Johnnie | R2 | Yes | lake trout closed all year |
| Sudbury | Kakakise | E | No | lake trout closed all year |
| Sudbury | Killarney | E | No | sanctuary - closed all year |
| Sudbury | Kukagami | N1 | No | sanctuary - Oct 1 to Fri before last Sat in Apr |
| Sudbury | Lumsden | E | No | sanctuary - closed all year |
| Sudbury | Nellie | E | No | sanctuary - closed all year |
| Sudbury | Norway | E | No | sanctuary - closed all year |
| Sudbury | O.S.A. | E | No | sanctuary - closed all year |
| Sudbury | Peter | R2 | Yes | lake trout closed all year |
| Sudbury | Ruth-Roy | E | No | sanctuary - closed all year |
| Sudbury | White Oak | R1 | No | sanctuary - closed all year |
| Sudbury | White Pine | N1 | No | sanctuary - closed all year |
| Wawa | Molybdenite | 12 | Yes | lake trout closed all year |
| Wawa | Little Agawa | 11 | No | lake trout closed all year |

## 8.3-Monitoring Priorities

A multi-year monitoring schedule is not provided. It is anticipated that priorities for any given year will need to be established based on the nature of available funding, linked research initiatives, and any logistical challenges that may arise. Monitoring priorities are suggested in Table 16 with selection for any given year dependant on the objectives set.

Table 16: Monitoring priorities related to restoration of acid damaged lake trout lakes in NER.

| Assessment Objective | Priorities | Suggested Lakes |
| :---: | :---: | :---: |
| Monitor for continued chemical recovery | High priority where pH is approaching lake trout threshold of 5.5 (i.e. lakes presently in marginal condition). Suggest 2010 water chemistry updates - first verify what has been covered through routine monitoring by OMOEE. | Priority 1: 20 lakes pH 5.2 to 5.5 <br> Priority 2: 22 lakes $\mathrm{pH}<5.2$ <br> Priority 3: 27 lakes pH 5.5 to 6.0 <br> Refer to Table 11 |
| Collect baseline inventory data for new lakes | High priority where pH approaches or exceeds threshold of 5.5 (as a minimum pH should exceed 5.2). | Marjorie |
| Monitor natural recovery | High priority where current abundance is low but a decision has been made to hold off on restocking to give residual fish additional time to generate noticeable recruitment. | Pecors <br> Three Narrows - allow time for additional chemical recovery |
|  | High priority where complex fish communities exist. | Tyson <br> Kindle (paired plant) <br> Lower Metagamasi <br> Stouffer <br> Nook |
| Evaluate survival of stocked fish | High priority where stocking is limited either due to availability of suitable product or where District and/or Park staff have decided to limit initial stocking rates / frequency. | Hough <br> Nordic <br> Florence <br> Grey Owl <br> Caswell - best to assume survival and wait until 2010 to evaluate recruitment in order to reduce mortality (additional Kinscotes are not readily available) |
| Monitor for natural recruitment | High priority with timing dependant on stocking strategy (i.e. age of stocked fish \& date of initial stocking); allow sufficient time for three years of potential natural recruitment (i.e. allow stocked fish to reach age 10). | Bell <br> Johnnie <br> George <br> Great Mountain - allow time for additional chemical recovery |

Short term monitoring priorities are highlighted providing a list of 14 lakes to select from over the next 3 to 4 years. It should be noted that monitoring priorities to serve research needs may vary from those presented above depending on the research objectives involved. The Nordic standard should clearly be adopted as the tool of choice for monitoring the recovery of damaged lakes given the role that fish community structure plays in setting restoration strategies and in determining success. Standardized data will also serve to feed research programs as the data
collected can be stratified by treatment type (e.g. closed vs. open lakes, simple vs. complex communities, yearling vs. 2 year old vs. adult stockings, etc.).

## 8.4 - Monitoring Costs

Given completion of the regional lake trout project, future stocking and monitoring requirements will need to be taken on by the District Offices. While the Districts involved are prepared to assume responsibility for monitoring, the work will not get done without dedicated funding. An estimate of minimum long-term funding requirements is provided below.

Over 30 lakes are presently being restocked and additional lakes with marginal chemistry continue to recover. A monitoring plan with a target to revisit all lakes presently being stocked over a 10 year period, while allowing for baseline inventory of new lakes, will require a minimum of 4 Nordic surveys per year. Annual costs are estimated below; however, it should be recognized that future costs will rise with the cost of labor, aircraft, and equipment.


## 9.0 - Summary of Key Findings

## 9.1-Stock Status Review

- Of 1027 lake trout lakes on record in NER, only 915 are presently managed for lake trout and only $680(66.2 \%)$ are considered to be self-sustaining. It should be noted that an effort is being made to enhance the resource base. An additional 30 lakes are classified as introductions in progress, 38 lakes as restorations, and 30 lakes as void - to be considered for restoration pending additional water quality improvement.


## 9.2-Angler Effort Patterns

- Levels of lake trout fishing pressure estimated in NER between 2001 and 2003 are of concern. Although mean annual angling intensity documented for the 529 self-sustaining lakes surveyed ( 5.4 hours $\bullet \mathrm{ha}^{-1}$ ) was found to be below the mean sustainable benchmark ( $\mathrm{E}_{\mathrm{msy}}$ ) for the same self-sustaining lakes ( 6.4 hours $\cdot \mathrm{ha}^{-1}$ ), estimated angling intensity ranged from 0 to $30+$ hours $^{-} \mathrm{ha}^{-1}$ and $32 \%$ of the lakes surveyed were found to have documented angler effort exceeding $\mathrm{E}_{\text {msy }}$.
- Current levels of angling intensity were found to be 2.5 angler-hours•ha ${ }^{-1}$ lower than historical estimates. The majority of the reduction occurred in the open water season (2 hours $\bullet \mathrm{ha}^{-1}$ ), although there was still a significant reduction of 0.5 hours $\bullet \mathrm{ha}^{-1}$ during the winter season.
- Fishing pressure was found to be highest in areas adjacent to Sault Ste. Marie, Blind River, and Elliot Lake (i.e. watersheds 2BF, 2CA, and 2CD). Watersheds adjacent to Sudbury are fished less intensely than watersheds closer to Sault Ste. Marie, a trend presumed to be related to poor resource status in the Sudbury Area owing to the combined impacts of acidification and past exploitation.
- The four watersheds adjacent to Sault Ste. Marie, Blind River, and Elliot Lake were also found to have the highest road density. Linear regression revealed a significant relationship between road density and annual angler effort.
- There was no detectable difference in angling pressure across the proposed new Fisheries Management Zones while correcting for lake surface area.
- Lake surface area was consistently driving the observed patterns in lake trout angling effort. Although large lakes received more effort overall, distinct seasonal differences were observed, where smaller lakes were fished more intensely in the winter and larger lakes were fished more intensely in the summer. The majority of lakes which experienced more hours•ha ${ }^{-1}$ in the winter were less than 100 ha in size.
- Significant contributors to observed patterns in angling effort were the presence of cottages, tourist outfitters, and roads. There was consistently higher effort on lakes with cottages and tourist lodges. There was also an increase in open water effort, and in turn annual effort, on lakes with good road access. There was no significant difference in winter effort related to road accessibility indicating that many remote lakes are readily accessed by snowmobile. Winter effort was found to be higher than summer effort on remote lakes.
- While a visual review of effort distribution across the landscape suggested some association between effort and population centres, regression analysis revealed that the proximity of lakes to population centres had very little influence on observed effort, explaining at most $6 \%$ of the observed variation beyond that explained by surface area. Two key drivers of fishing pressure beyond proximity to urban centres were identified: angling quality and quality of access. Lake trout biomass, a surrogate of angling quality, was found to have a significant positive effect on angler effort especially for remote lakes. Anglers are willing to work harder for a high quality angling experience. Furthermore, angling quality was found to interact with accessibility. Together, biomass and accessibility explained $16 \%$ of the variation in effort beyond that explained by surface area alone. Both factors play a significant role in the distribution of effort across the landscape.
- As discussed above, high effort was observed on lakes with cottages. Effort on almost half of these lakes exceeded effort at maximum sustainable yield ( $\mathrm{E}_{\mathrm{msy}}$ ). The majority of lakes with easy access (highway and primary roads) also had observed effort greater than $\mathrm{E}_{\text {msy }}$. Developed lakes with roads and cottages are attracting unsustainable levels of angling. On the contrary, three quarters of small lakes ( $<100 \mathrm{ha}$ ), and lakes with more difficult access (trail and remote access) had observed effort less than $E_{\text {msy }}$, reflecting the relatively low level of effort these lakes are attracting.
- In conclusion, large, accessible lakes seem to be most vulnerable to over-fishing at present (i.e. observed effort above $\mathrm{E}_{\text {msy }}$ ), primarily due to increased open water effort. Small lakes with poor road access have higher effort during the winter from snowmobile use; however, for the majority of these lakes, observed levels of annual effort are considered 'safe' (i.e. observed effort below $\mathrm{E}_{\text {msy }}$ ). Although there has been a reduction in angling intensity of nearly 2.5 hours $^{\circ} \mathrm{ha}^{-1}$ over the last 30 years, $32 \%$ of the lakes sampled are still experiencing effort beyond sustainable levels.


## 9.3-Life History Analysis

- With biological data pooled for the region, female lake trout were found to be $50 \%$ mature at age 7 (total length $=402 \mathrm{~mm}$ ) and $90 \%$ mature at age $11(538 \mathrm{~mm})$. Males were found to be $50 \%$ mature at age $6(383 \mathrm{~mm})$ and $90 \%$ mature at age 11 ( 514 mm ).
- Comparison of male and female age distributions revealed that there were fewer old female lake trout (i.e. beyond age 10). Unrelated analyses completed by Casselman (2004) suggest that mature female lake trout are more vulnerable to angling from mid to late summer given energy requirements associated with gonadal development. Specifically, commencing July 1, the proportional harvest of mature females can increase to $70 \%$ when only $13 \%$ of the population falls into this category. Such a harvest trend would be of great concern for easy access / cottage type lakes which tend to receive more summer effort.


## 9.4- Quadrant Analysis

- A representative set of 130 lakes was used to evaluate the current health of NER lake trout lakes. Only $16.9 \%$ of the lakes sampled received a healthy diagnosis (i.e. abundant lake trout and sustainable fishing pressure). An additional $15.4 \%$ of the lakes sampled were characterized by good lake trout abundance but are presently being over-fished; abundance can be expected to decline. A further $26.9 \%$ of the lakes sampled are presently being overfished and abundance has already declined. Finally, $40.8 \%$ of the lakes sampled were classified as degraded; both abundance and fishing pressure are low. The 130 lakes selected theoretically reflect the status of 696 lakes presently considered to be self-sustaining (N1, R1, I1) or partly self-sustaining (N3) and the following extrapolation can be made. There are only estimated to be 225 self-sustaining lake trout lakes in NER which presently provide for healthy levels of lake trout abundance and nearly half of these lakes are presently subject to unsustainable levels of fishing pressure.
- Spatial trends in resource status were detected. Only 20.0\% of Sudbury lakes were found to meet the abundance benchmark (Quadrants $1 \& 2$ combined), as compared to $32.3 \%$ regionally, and a full $53.3 \%$ of Sudbury lakes were classified as degraded (Quadrant 4). The extremely poor condition of Sudbury lakes is likely attributable to the combined impacts of acidification and past exploitation. North Bay District lakes were found to be slightly better; $22.2 \%$ meet the abundance benchmark and $40.7 \%$ are classified as degraded. SSM District lakes were found to be the healthiest; $44.0 \%$ meet the abundance benchmark and $30 \%$ are classified as degraded.
- Despite the spatial trend in resource status observed by District, no differences were detected across the proposed new Fisheries Management Zones. Specifically, FMZ 10 and FMZ 11 lakes are in similar condition.
- Lake trout abundance was found to decrease with increasing species richness. With the dataset partitioned, a significant effect is only observed for populations falling below the abundance benchmark. A combination of high species richness and lake trout exploitation could be a recipe for long term degradation. Alternately, a lake trout abundance response may be more related to the presence of certain key species than to overall species richness. Clearly some species (e.g. centrarchids) would have greater implications than others (e.g. cyprinids).
- Smallmouth bass were found to have a very clear impact on lake trout abundance and population status in NER. Lake trout abundance is lower where bass are present and there are disproportionately more healthy lakes where smallmouth bass are absent. This finding is supported by existing literature, where researchers have documented severe competitive effects (Vander Zanden et al., 1999 and Vander Zanden et al., 2004)
- Smallmouth bass were found to have been introduced in $14.8 \%$ of lakes where original lake survey data was available. If rock bass are included in the query, the introduction rate increases to $24.1 \%$. Walleye were found to have an introduction rate of $9.3 \%$. These introduction rates would seem alarming considering the documented impact that such competitive species have on lake trout population health.
- As supported by current literature, lake trout abundance was found to decrease in the presence of coregonids (lake herring and / or whitefish). However, given that the abundance benchmarks were calculated based on empirical estimates of $\mathrm{L}_{\infty}$, the observed shift downwards on the quadrant plot is not expected. Higher estimates of $\mathrm{L}_{\infty}$ and lower abundance reference points result where coregonids are present and should in theory balance off the reduction in observed abundance all other factors being equal. A plausible explanation for a decline in resource health would be that larger bodied lake trout populations are more sensitive to exploitation than smaller bodied populations. Coregonids not only serve as a forage species but also compete with young lake trout. As a large bodied population is fished down, coregonids become more abundant and can present a barrier to the survival of young lake trout. Depleted populations of large bodied lake trout may be very slow to recover given this potential barrier.
- An interesting find - there were disproportionately more lakes found to meet the abundance benchmark (Quadrants 1 and 2 combined) and fewer degraded (Quadrant 4) lakes where smelt were present. This finding is supported by Vander Zanden et al. (2004). The presence of pelagic forage fish can buffer lake trout populations from the impact of bass and other competitors on littoral prey fish abundance.
- Finally, residual angler interest can present a barrier to population recovery. For lakes below the abundance benchmark, angler effort was found to be positively correlated with lake trout density. Angler interest in marginal fisheries would indeed appear to be density dependant and depleted lakes may be very slow to recover without additional harvest control.


## 9.5 - Recovery of Acid Damaged Lakes

- Acidification continues to be a primary driver of resource status in NER as evidenced by the high number of degraded lakes in proximity to Sudbury. Approximately 100 lake trout lakes in NER have been severely impacted by industrial pollution.
- Sudbury smelter emissions have been reduced by $90 \%$ and NER lake trout lakes are recovering. Approximately $60 \%$ of the industrially damaged lakes on record are presently suitable for lake trout. Research has shown that currently, sulphate deposition is dominated by continent-wide distribution of air pollutants rather than by local point sources. Broad emission reductions beyond currently legislated levels may be required if all acid-damaged lakes in sensitive areas like Killarney are to recover.
- Despite ongoing chemical recovery, fish community problems persist. On a positive note, native populations survived acidification and are presently self-sustaining in 25 lakes and self-sustaining populations have been reestablished in 10 additional lakes through hatchery stocking. Furthermore, 34 lakes where native populations were extirpated are presently suitable for lake trout and restoration is underway. However, 31 lakes remain void, the majority of which require additional chemical recovery.
- Re-establishment of reproducing lake trout populations has proven to be very difficult in lakes with abundant competitors or predators (bass, walleye, herring, whitefish, etc.), but almost routine in lakes with relatively simple fish communities (Gunn et al., 1987; Evans and Olver, 1995).
- Applied restoration strategies include lake trout stocking and a range of harvest control measures. Surplus adult broodstock and 2 year old hatchery products are being used as alternatives to regular yearling stocking in the face of complex fish communities. Nearly 250,000 lake trout were stocked between 2001 and 2005 and additional restocking is required. Although reproducing populations are more readily established where angler harvest is curtailed, substantive harvest resulting from a pulse of angler interest can be expected when a closed fishery is opened. For the majority of the lakes being restored, stocking is ongoing with regular 9 month open seasons recognizing that angling pressure will build concurrent with lake trout biomass. For the remaining lakes, harvest control strategies have been applied, ranging from reduced winter lake trout seasons to full year round sanctuaries.


## 10.0-Recommendations

## 10.1 - Harvest Control

Given that a substantial number of NER lake trout lakes are presently being over-fished, that the resource is in poor health overall, and that residual angler effort would appear to be density dependant limiting population recovery, additional harvest control measures should be implemented.

- Reducing the lake trout catch limit to 2 as recommended in the draft Lake Trout Tool Kit (OMNR 2006) would seem like a logical first step although it is generally accepted that such a change will not be sufficient to address sustainability concerns.
- Reducing winter seasons as suggested by Olver et al. (1991) would be another option. It should be noted however, that results of the extensive aerial creel data collected do not support previous observations that a disproportionate amount of annual effort on lake trout lakes occurs during the winter months (Evans et al. 1991). Winter effort was only found to exceed open water effort on small remote lakes and for the majority of these lakes, observed annual effort was below the $\mathrm{E}_{\text {msy }}$ benchmark. Furthermore, winter effort can be expected to decline over time without modification of the open season given a trend towards warmer winters and reduced periods of safe ice cover. Finally, it must be recognized that shortened winter lake trout seasons will direct angler effort and associated impacts to other species (e.g. brook trout and walleye) and that the reduction in winter lake trout effort and harvest realized may not be as substantial as one might expect (Amtstaetter 2006). Lake trout effort may simply become more concentrated with anglers targeting other species outside of a reduced open season, switching interest to lake trout when the season opens.
- An earlier mid to late summer closure date should also be considered. Such a regulation would reduce selective harvest of mature females and improve reproductive potential. A shortened late summer season would have a lesser affect on angling opportunities and may be better received than a reduced winter season.
- Based on the life history analysis presented, the effectiveness of selective protection of mature fish above 40 to 50 cm should be evaluated as a potential alternative to shortened seasons. A one over 40,45 , or 50 cm regulation may address variation in lake trout growth patterns across the landscape and the relative sensitivity of large versus small bodied populations. Specifically, such a regulation should disproportionately reduce the number of mature lake trout harvested on large bodied lakes as compared to small bodied lakes, a strategy which would seem to make sense given that smaller bodied populations tend to be more resilient.

In addition to potential harvest control measures, the value of stocked put-grow-take trout fisheries (F1 splake, brook trout, and lake trout) in absorbing / deflecting angling pressure cannot be overstated. An effort should be made to maintain or expand such stocking programs especially where suitable recipient water bodies exist in proximity to self-sustaining lake trout lakes.

It is important to recognize, as potential regulatory options are evaluated and effectiveness monitoring strategies are developed, that a number of questions remain regarding the benchmarks used in SoR reporting and the effect of habitat and community variables on potential lake trout production. Not all lakes below the abundance benchmark are there as a result of past exploitation and some may not have the potential to move upwards regardless of harvest control efforts.

## 10.2 - Introduced Species

To address the threat of introduced species, MNR and OFAH should work together to educate anglers as to the consequences of fish transfers - both intentional transfers and unintentional transfers through careless use of bait. Some excellent communications products were recently developed by OFAH in partnership with NER. Additional effort should be made to ensure that
the messaging developed reaches the intended audience. Furthermore, the illegal transfer of live fish should be given a high enforcement priority and should carry stiff penalties. While a lake trout population may recover from illegal harvest the effect of an unauthorized bass or walleye introduction is irreversible.

Furthermore, given mounting evidence regarding the impact of introduced species on lake trout and other valued sportfish, consideration should be given to restricting the use of baitfish in the province of Ontario. While one option would be an outright ban on the sale and use of baitfish, such a move would generate considerable opposition among both the baitfish industry and anglers in general. Other, more palatable options might include a province wide ban on the sale and use of 'live' baitfish or perhaps a restriction on the capture of baitfish for personal use. If all baitfish originated from licensed retailers, which were audited on a regular basis, the incidence of undesirable species in personal bait buckets might be reduced. Furthermore, licensed baitfish retailers should be restricted to retail of local bait only. As a minimum, baitfish from southern Ontario should not be transported north given the constant barrage of Great Lakes invaders.

## 10.3-Road Access and Development

Unsustainable fishing pressure and the spread of invasive species can both be linked to road access. It is imperative that the location of new resource access roads be planned in a manner that does not further erode the remoteness of our self-sustaining lake trout lakes. Already the network of resource access roads created in Ontario has resulted in but a small portion of the Boreal landscape that can still be considered remote (Gunn and Sein, 2000).

Similarly, unsustainable fishing pressure and the spread of invasive species can be linked to lake development (i.e. cottage development). NER should fully support current policy initiatives relating to development on lake trout lakes and the restrictive approach proposed for selfsustaining lakes.

While it is recognized that the network of protected areas in NER affords a degree of protection from both access and development, only $30 \%$ of the self-sustaining lake trout lakes in NER lie completely within protected area classes which can be expected to effectively limit the creation of new access. Clearly access and development considerations need to extend beyond the current protected areas network.

## 10.4 - Acid Recovery

Work to restore acid damaged lakes in NER must continue. Additional stocking and a long-term monitoring program are required. While the Districts involved may be prepared to assume responsibility for monitoring, the work will not get done without dedicated funding beyond base allocations. The cost of a minimum monitoring program has been estimated at $\$ 30,000$ annually.

The Nordic standard should clearly be adopted as the tool of choice for monitoring the recovery of damaged lakes given the role that fish community structure plays in setting restoration strategies and in determining success. Standardized data will also serve to feed research programs. Given the range of stocking and restoration strategies applied, a framework for future research initiatives has been established.

## 10.5 - Water Levels

There is some indication that water level manipulation is affecting the health of lake trout populations in NER. The potential affects of winter draw downs on lake trout should be given continued consideration through effectiveness monitoring as part of water management planning exercises and elevated as a science priority to the Waterpower Science Strategy Steering Committee.

## 10.6 - Future State-of-Resource Monitoring

Consideration should be given to adopting the Nordic standard as the tool of choice for assessment of lake trout lakes within the framework of the proposed provincial SoR program. Nordic CUE's have been calibrated to lake trout abundance and further refinement of the relationship will be possible as additional data is collected. The Nordic standard also provides valuable data regarding the status of other sportfish (e.g. walleye) and the structure of the fish community in general. Given the obvious role that fish community factors play in the health of lake trout populations, this aspect of resource status needs to be considered. Information around fish community structure will prove instrumental in further refinement of abundance reference points.

Assuming funding for future monitoring cycles does materialize, consideration should be given to reducing aircraft costs through selection of representative watersheds for aerial effort surveys and increasing sample size within selected watersheds for the index netting component (i.e. above the $10 \%$ sample recommended by McGuiness et al. (2000)).

Furthermore, as recommended by McGuiness et al. (2000), consideration should be given to establishment of fixed sampling sites (lakes) to supplement random index netting for future monitoring cycles in NER. It has been suggested that the 20 lake trout lakes currently monitored by Ontario's FAU network could serve the need for fixed sampling sites to support trend through time analysis. A key concern with this approach is that there are presently no FAU lakes in NER.

## 11.0 - Final Comments

While acid damaged lake trout lakes in NER have shown dramatic chemical recovery in recent decades and efforts to restore lost lake trout populations are well underway, the broader state-ofresource data collected suggests that NER lake trout populations are in poor health overall. There are only estimated to be 225 self-sustaining lake trout lakes in NER which presently provide for healthy levels of lake trout abundance. Furthermore, the data collected clearly suggests that proliferation of road access (resulting in over-exploitation) and the impact of introduced species are two significant issues currently impacting resource health. Often, these emerging stressors occur in tandem, where lakes with good road access have higher rates of exploitation and higher incidence of introduced species.

Given limited reproductive potential and sustainable yields, lake trout populations are highly sensitive to exploitation. Even a short term harvest pulse associated with the construction of a new access road can have long-term effects on population abundance and sustainability as fish
community imbalances can result and are difficult to reverse. Fishing pressure data collected on self-sustaining lake trout lakes in the northeast shows that angling intensity is highest on large lakes with good road access. Smaller, more remote lakes are fished less intensely with winter effort exceeding open water effort. For the majority of these lakes, annual effort is considered to be 'safe' (i.e. below $\mathrm{E}_{\mathrm{msy}}$ ). Overall, 32\% of the self-sustaining lakes surveyed are experiencing angling effort beyond sustainable levels and nearly $50 \%$ of the lakes found to still support healthy lake trout abundance levels are being over-fished. Furthermore, the introduction of competitive species, such as smallmouth bass (Micropterus dolomieu) and walleye (Sander vitreus) is occurring at an alarming rate. Standardized population assessments from 130 lakes showed a $40 \%$ decrease in adult lake trout density in lakes with smallmouth bass present.

Finally, to speak of lake trout and not mention the potential impact of climate change would seem remiss. Shuter and Lester (2004) offer the following predictions: As surface waters warm and longer stratification periods produce anoxia in deeper waters, usable habitat for lake trout will contract. This in turn will result in reductions in sustainable harvest levels and sustainable angling pressure. At the same time, anglers may become more proficient given that fish will be confined by narrower bands of summer habitat for extended periods of time. The overall effect of climate change on many populations will be to render current levels of use grossly unsustainable and to mandate levels of protection far more stringent than those currently in place. Furthermore, warming will drive changes in fish community structure, changes that can be exacerbated by species introductions caused by humans (Vander Zanden et al. 2004).

In summary, while efforts are being made to recover damaged lake trout populations in Northeastern Ontario, managerial responses to emerging issues are needed. Decisive action must be taken to reduce harvest, maintain remoteness, and address the potential impact of introduced species.

## 12.0 - References

Amtstaetter, F. 2006. Changes in the winter fishery of Greenwater Lake following a reduction in fishing season length. Aquatics Update 2006-1. Quetico-Mille Lacs Fisheries Asessment Unit, Northwest Science and Information, Ministry of Natural Resources, Thunder Bay, Ontario. 2 p.

Appelberg, M. 2000. Swedish Standard Methods for Sampling Freshwater Fish with Multi-mesh Gillnets. Fiskeriverket Information 2000:1. Goteborg, Sweden.

Brown, D.M. 2003. The effects of bass introductions on the growth of native lake trout (Salvelinus namaycush) in the Haliburton Highlands, Ontario. Trent University, Peterborough. M.Sc. Thesis. 180 p.

Caddy, J. 1998. A short review of precautionary reference points and some proposals for their use in data-poor situations. FAO Fisheries Technical Paper 379.

Casselman, J.M. 1990. Growth and relative size of calcified structures in fish. Transactions of the American Fisheries Society 119: 673-688.

Casselman, J.M. 2004. The lake trout (Salvelinus namaycush): An important northern freshwater keystone predator and valuable fish resource (Effects of temperature, global extremes and climate warming on year-class production of warmwater, coolwater and coldwater fishes in the Great Lakes Basin). In L. McKee and S. Thompson (eds.) Symposium proceedings: Symposium on the ecology, habitat and management of lake trout in North America. Whitehorse, Yukon, August 14-16, 2002. 17-26 pp.

Dillon, P.J., Clark, B.J., Molot, L.A., and Evans, H.E. 2003. Predicting the location of optimal habitat boundaries for lake trout (Salvelinus namaycush) in Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 60: 959-970.

Environmental Commissioner of Ontario. 2002. Developing Sustainability: Annual Report 20012002. Toronto. 191 p.

Evans, D.O., and Olver, C.H. 1995. Introduction of lake trout (Salvelinus namaycush) to inland lakes of Ontario, Canada: factors contributing to successful colonization. Journal of Great Lakes Research 21(Suppl. 1): 30-53.

Evans, D.O. 2005. Effects of hypoxia on scope-for-activity of lake trout: defining a new dissolved oxygen criterion for protection of lake trout habitat. Aquatic Research and Development Section, Ministry of Natural Resources, Peterborough, Ontario. 18 p.

Gunn, J.M., McMurtry, M.J., Bowlby, J.N., Casselman, J.M., and Liimatainen, V.A. 1987. Survival and growth of stocked lake trout in relation to body size, stocking season, lake acidity, and the biomass of competitors. Transactions of the American Fisheries Society 116: 618-627.

Gunn, J.M., Hamilton, J.G., Booth, G.M., Beggs, G.L., Wren, C.D., Rietveld, H.J., and Munroe, J.R. 1990. Survival, growth, and reproduction of lake trout (Salvelinus namaycush) and yellow perch (Perca flavescens) after neutralization of an acid lake near Sudbury, Ontario. Canadian Journal of Fisheries and Aquatic Sciences 47: 446-453.

Gunn, J.M., and Mills, K.H. 1998. The potential for restoration of acid-damaged lake trout lakes. Restoration Ecology 6: 390-397.

Gunn, J.M., and Sein, R. 2004. Effects of forestry roads on reproductive habitat and exploitation of lake trout. In Boreal shield watersheds: lake trout ecosystems in a changing environment. Edited by J. Gunn, R. Steedman and R. Ryder. Lewis/CRC Press. 265-278 pp.

Hicks, F. 1999. Manual of instructions, spring littoral index netting. Ministry of Natural Resources, Peterborough, Ontario. 37 p.

Keller, B., Dillon, P., Heneberry, J., Malette, M., and Gunn, J. 2001. Sulphate in Sudbury, Ontario, Canada, lakes: recent trends and status. Water, Air, and Soil Pollution 130: 793798.

Kelso, J.R.M., and Gunn, J.M. 1984. Response of fish communities to acidic waters in Ontario. In Early biotic responses to advancing lake acidification. Edited by G.R. Hendrey. Butterworth Publisher, Stoneham, Massachusetts. 105-115 pp.

Janoscik, T.M., and Lester, N.P. 2003. Use of spring littoral index netting (SLIN) to assess lake trout abundance. FAU Network Report. Ontario Ministry of Natural Resources, Peterborough, Ontario. 15 p.

Lester, N.P., Petzold, M.M., Dunlop, W.I., Monroe, B.P., Orsatti, S.D., Schaner, T., and Wood, D.R. 1991. Sampling Ontario Lake Trout Stocks: Issues and Standards. Lake Trout Synthesis. Ministry of Natural Resources, Toronto, Ontario.

Lester, N.P., and Dunlop, W.I. 2004. Monitoring the state of the lake trout resource: a landscape approach. In Boreal shield watersheds: lake trout ecosystems in a changing environment. Edited by J. Gunn, R. Steedman and R. Ryder. Lewis/CRC Press. 293-328 pp.

Martin, N.V., and Olver, C.H. 1980. The lake charr, Salvelinus namaycush. In Charrs: Salmonid Fishes of the Genus Salvelinus. Balon, E.K., Ed., Dr. W. Junk, The Hague, The Netherlands.

McCrudden, C. 1993. Lake Trout Restoration Ecology Plan. Unpublished report. Ministry of Natural Resources, Temagami, Ontario.

McGuiness, F., Lester, N., Fruetel, M., Jackson, D., Powell, M., Dunlop, W., and Marshall, T. 2000. Monitoring the State of the Lake Trout Resource: Program Design and Costs. Ministry of Natural Resources, Peterborough, Ontario. 50 p.

Morgan, G.E., and Snucins E. 2005. Manual of Instructions, Nordic Index Netting. Ministry of Natural Resources, Ontario. 47 p.

Ontario Ministry of Natural Resources (OMNR). 1990. Lake Trout Lakes in Ontario. Ministry of Natural Resources, Ontario. 67 p.

Ontario Ministry of Natural Resources (OMNR). 2004. Monitoring the state of Ontario’s inland lakes fisheries resources: a pilot study. Ministry of Natural Resources, Ontario.

Ontario Ministry of Natural Resources (OMNR). 2005. A new ecological framework for recreational fisheries management in Ontario. Ontario Ministry of Natural Resources, Fisheries Section, Peterborough, Ontario. 4 p.

Ontario Ministry of Natural Resources (OMNR). 2006. Regulatory guidelines for managing the lake trout recreational fishery in Ontario (Draft). Fisheries Section, Ministry of Natural Resources, Peterborough, Ontario. 29 p.

Olver, C.H., DesJardine, R.L., Goddard, C.I., Powell, M.J., Rietveld, H.J., and Waring, P.D. 1991. Lake trout in Ontario: management strategies. Lake Trout Synthesis Management Strategies Working Group, Ministry of Natural Resources, Toronto, Ontario. 86 p.

Parker, S., Krausse M., and Dunlop, W. 2006. Estimating angler effort from aerial surveys. Draft report. Ministry of Natural Resources, Ontario. 28 p.

Pauly, D. 1984. Fish Population Dynamics in Tropical Waters: A Manual for Use with Programmable Calculators. ICLARM Studies and Review 8, International Centre for Living Aquatic Resources Management, Manila, Philippines. 325 p.

Payne, N.R., Korver, R.M., MacLennan, D.S., Nepszy, S.J., Shuter, B.J., Stewart, T.J., and Thomas, E.R. 1990. The harvest potential and dynamics of lake trout populations in Ontario. Lake Trout Synthesis Population Dynamics Working Group Report. Ministry of Natural Resources, Toronto, Ontario.

Polkinghorne, D., and Gunn, J. 1981. Sudbury District lake trout lakes ... a description of the lakes and the changes produced by man. Unpublished report. Ontario Ministry of Natural Resources, Sudbury.

Post, J.R., Sullivan, M., Cox, S., Lester, N.P., Walters, C.J., Parkinson, E.A., Paul, A.J., Jackson, L., and Shuter, B.J. 2002. Canada's recreational fisheries: The invisible collapse. Fisheries 27(1): 6-17.

Powell, M.J., Bernier, M.-F., Kerr, S.J., Leering, G., Miller, M., Samis, W., and Pellegrini, M. 1986. Returns of hatchery-reared lake trout from 8 lakes in northeastern Ontario. Ontario Fisheries Technical Report Series No. 22.

Powell, M.J., and Carl, L.M. 2004. Lake trout stocking in small lakes: factors affecting success. In Boreal shield watersheds: lake trout ecosystems in a changing environment. Edited by J. Gunn, R. Steedman and R. Ryder. Lewis/CRC Press. 219-238 pp.

Shuter, B.J., Jones, M.L., Korver, R.M., and Lester, N.P. 1998. A general life history based model for regional management of fish stocks: the inland lake trout (Salvelinus namaycush) fisheries of Ontario. Canadian Journal of Fisheries and Aquatic Sciences 55: 2161-2177.

Shuter, B.J., and Lester, N.P. 2004. Climate change and sustainable lake trout exploitation: predictions from a regional life history model. Boreal shield watersheds: lake trout ecosystems in a changing environment. Edited by J. Gunn, R. Steedman and R. Ryder. Lewis/CRC Press. 281-291 pp.

Snucins, E., and Gunn, J. 1992. Rehabilitation strategies for acidified lake trout lakes in the Sudbury area. Unpublished report. Cooperative Fisheries Unit, Laurentian University, Sudbury.

Snucins, E., Gunn, J., Keller, B., Dixit, S., Hindar, A., and Henriksen, A. 2001. Effects of regional reductions in sulphur deposition on the chemical and biological recovery of lakes within Killarney Park, Ontario, Canada. Environmental Monitoring and Assessment 67: 179-194.

Snucins, E. 2001. Northeastern Ontario lake trout enhancement project: Evaluating the status of acid-stressed lake trout lakes - Year 2000 data summary and stocking recommendations. Unpublished report. Cooperative Freshwater Ecology Unit, Laurentian University, Sudbury.

Snucins, E. 2002. Northeastern Ontario lake trout enhancement project: Evaluating the status of acid-stressed lake trout lakes - Year 2001 data summary and stocking recommendations. Unpublished report. Cooperative Freshwater Ecology Unit, Laurentian University, Sudbury.

Snucins, E. 2003. Northeastern Ontario lake trout enhancement project: Evaluating the status of acid-stressed lake trout lakes - Year 2002 data summary and stocking recommendations. Unpublished report. Cooperative Freshwater Ecology Unit, Laurentian University, Sudbury.

Snucins, E., and Gunn, J. 2003. Use of rehabilitation experiments to understand the recovery dynamics of acid-stressed fish populations. Ambio 32: 240-243.

Vander Zanden, M.J., Casselman, J.M., and Rasmussen, J.B. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 410: 464-467.

Vander Zanden, M.J., Wilson, K.A., Casselman, J.M., and Yan, N.D. 2004. Species introductions and their impact in North American Shield lakes. In Boreal shield watersheds: Lake trout ecosystems in a changing environment. Edited by J. Gunn, R. Steedman and R. Ryder. Lewis/CRC Press. 239-263 pp.

Appendix 1: Clarification / modification of lake trout stock status codes from Lake Trout Lakes in Ontario (OMNR 1990) - 2003 NER additions / clarification in italics.

## Native Populations

- N1 - native population, natural reproduction, self-sustaining, unstocked Clarification: if stocking has been terminated in favor of natural recruitment then N1 regardless of historic stocking records
- N2 - native population, natural reproduction, partly self-sustaining, supplemented by plantings of native stock Clarification: some natural recruitment, ongoing supplemental stocking with native stock - very rare
- N3 - native population, natural reproduction, partly self-sustaining, supplemented by plantings of non-native stock Clarification: as per N2 but currently being supplemented with non-native stock, more common but being phased out
- N4 - native population, little or no reproduction, population maintained by plantings of native stock Clarification: ongoing put-grow-take stocking with native stock - very rare
- N5 - native population, little or no reproduction, population maintained by plantings of nonnative stock Clarification: ongoing put-grow-take stocking, non-native stock - common
- N6 - native remnant population, self-sustaining, supplemented by plantings of F1 splake Clarification: native lake trout lake converted to F1 splake put-grow-take, normally only where native population has been lost

Introduced Populations Clarification: no evidence of native population historically

- I1 - introduced population, no native stock, self-sustaining
- I2 - Introduced population, no native stock, population maintained by plantings
- I - introduced population, further information unknown Clarification: stocked without follow-up assessment or reasonable anecdotal evidence of establishment or failure

Re-Introduced Populations Clarification: same coding breakdown as per Introduced Populations, the difference being restoration of an extinct population in a known lake trout lake (eg. these are the codes that should be applied to the acidified lakes where restocking has or is occurring)

- R1 - reintroduced population, no native stock, self-sustaining
- $R 2$ - reintroduced population, no native stock, population maintained by plantings
- $R$ - reintroduced population, further information unknown


## Other Codes

- U - history unknown Clarification: Use of this code should be reserved for a limited number of lakes where history and status are truly unknown. Some Districts regularly applied this code to native lake trout lakes based on an absence of recent assessment data ie. we don't know how the population is doing. If we know lake trout are still present (eg. observed angler caught fish) and know that the lake has not been stocked then it should be classified as N1 recognizing that present level of abundance is unknown
- E - extinct population; native or introduced population that disappeared from a lake after a known period of natural reproduction
- L - lost population; population of unknown history and reproductive status which disappeared from a lake
- O - other (specify)

Appendix 2: Spring chemistry data for 104 randomly selected lakes in NER.

| DISTRICT | WBY LID | LAKE NAME | LAT | LONG | DATE | Alkalinity (mg/L) | pH | Conductivity ( $u$ mhos/cm) | $\begin{gathered} \hline \text { TDS } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$ | Turbidity (NTU) | Colour <br> (TCU) | $\begin{gathered} \hline \mathrm{DOC} \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$ | Phosphorous ( $u \mathrm{~g} / \mathrm{L}$ ) | $\begin{gathered} \hline \text { TKN } \\ (u \mathrm{~g} / \mathrm{L}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chapleau | 16-7142-53440 | Blackfish | 481256 | 840655 | 11/05/2004 | 10.09 | 6.94 | 36.0 | 23.98 | 0.12 | 84.22 | 14.07 | 9.15 | 424.8 |
| Chapleau | 17-3426-53189 | Nemegosenda | 480018 | 830638 | 11/05/2004 | 53.54 | 7.77 | 127.1 | 84.65 | 0.01 | 45.52 | 7.65 | 7.30 | 304.0 |
| Chapleau | 17-2934-53143 | Windermere | 475707 | 834607 | 11/05/2004 | 21.87 | 7.37 | 58.8 | 39.16 | 0.01 | 37.58 | 7.64 | 7.05 | 265.3 |
| Kirkland Lake | 17-5561-52598 | Greenwater | 472928 | 801523 | 18/05/2004 | 5.23 | 6.73 | 26.9 | 17.92 | 0.17 | 13.49 | 2.95 | 7.25 | 158.1 |
| Kirkland Lake | 17-5606-52675 | Munroe | 473336 | 801140 | 18/05/2004 | 5.76 | 6.62 | 34.5 | 22.98 | 0.01 | 34.74 | 6.61 | 4.85 | 206.6 |
| Kirkland Lake | 17-5182-52469 | Smith | 472241 | 804528 | 18/05/2004 | 0.83 | 5.91 | 20.5 | 13.65 | 0.01 | 11.70 | 3.61 | 3.95 | 183.6 |
| North Bay | 17-5827-52344 | Anim | 471537 | 795414 | 19/05/2004 | 8.58 | 6.98 | 39.4 | 26.24 | 0.01 | 6.95 | 3.28 | 4.60 | 166.7 |
| North Bay | 17-5674-52374 | Barter | 471720 | 800625 | 19/05/2004 | 3.34 | 6.48 | 28.8 | 19.18 | 0.05 | 18.91 | 5.22 | 5.95 | 181.5 |
| North Bay | 17-6069-51648 | Bear | 463749 | 793610 | 11/05/2004 | 1.97 | 6.06 | 20.0 | 13.32 | 0.04 | 36.68 | 7.49 | 7.30 | 280.4 |
| North Bay | 17-5288-52236 | Benner | 471002 | 803714 | 18/05/2004 | 0.88 | 5.95 | 23.8 | 15.85 | 0.01 | 9.79 | 2.70 | 3.95 | 147.6 |
| North Bay | 17-5533-52097 | Clearwater | 470226 | 801746 | 19/05/2004 | 5.39 | 6.89 | 35.2 | 23.44 | 0.01 | 2.61 | 1.80 | 4.90 | 155.0 |
| North Bay | 17-5788-51912 | Cross | 465213 | 795747 | 19/05/2004 | 9.43 | 7.17 | 58.5 | 38.96 | 0.01 | 14.74 | 3.37 | 6.05 | 172.2 |
| North Bay | 17-5521-51877 | Cucumber | 465040 | 801858 | 19/05/2004 | 10.47 | 7.10 | 47.0 | 31.30 | 0.01 | 5.35 | 1.73 | 3.80 | 113.9 |
| North Bay | 17-5605-51996 | Cummings | 465653 | 801222 | 19/05/2004 | 6.71 | 6.83 | 31.3 | 20.85 | 0.05 | 14.85 | 4.21 | 5.70 | 212.2 |
| North Bay | 17-5566-51724 | Dana | 464216 | 801533 | 19/05/2004 | 3.59 | 6.34 | 27.3 | 18.18 | 0.09 | 26.47 | 5.34 | 5.25 | 228.1 |
| North Bay | 17-5603-51797 | Deschamps | 464612 | 801235 | 19/05/2004 | 4.98 | 6.66 | 30.9 | 20.58 | 0.01 | 22.76 | 5.49 | 5.20 | 220.7 |
| North Bay | 17-5580-52276 | Diamond | 471210 | 801432 | 19/05/2004 | 3.67 | 6.64 | 27.1 | 18.05 | 0.01 | 12.93 | 4.04 | 5.20 | 178.4 |
| North Bay | 17-5467-52535 | Grays | 472607 | 802248 | 18/05/2004 | 0.30 | 5.37 | 19.9 | 13.25 | 0.01 | 19.79 | 4.29 | 3.60 | 130.2 |
| North Bay | 17-5491-52005 | Iron | 465728 | 802117 | 19/05/2004 | 1.27 | 6.07 | 26.4 | 17.58 | 0.01 | 6.78 | 2.90 | 4.00 | 169.8 |
| North Bay | 17-5263-52458 | Jerry | 472201 | 803911 | 18/05/2004 | 0.05 | 5.33 | 21.2 | 14.12 | 0.01 | 7.74 | 2.02 | 2.10 | 138.2 |
| North Bay | 17-5390-52352 | Landers | 471623 | 802841 | 18/05/2004 | -0.06 | 5.00 | 19.7 | 13.12 | 0.04 | 21.40 | 4.42 | 4.40 | 175.7 |
| North Bay | 17-5401-52454 | McGiffin | 472139 | 802804 | 18/05/2004 | 7.21 | 6.86 | 35.2 | 23.44 | 0.01 | 20.54 | 4.33 | 5.30 | 175.0 |
| North Bay | 17-5259-52267 | Pilgrim | 471143 | 803930 | 18/05/2004 | 0.27 | 5.50 | 22.5 | 14.99 | 0.01 | 11.06 | 3.02 | 3.90 | 194.7 |
| North Bay | 17-5351-52163 | Seagram | 470603 | 803213 | 18/05/2004 | 0.32 | 5.60 | 23.1 | 15.38 | 0.01 | 20.18 | 3.87 | 3.75 | 157.1 |
| North Bay | 17-5573-51927 | Turtleshell | 465321 | 801451 | 19/05/2004 | 5.90 | 6.90 | 32.1 | 21.38 | 0.01 | 11.24 | 3.74 | 4.80 | 178.0 |
| North Bay | 17-5476-52058 | Wawiagama (Round) | 470001 | 802255 | 19/05/2004 | 14.65 | 7.30 | 53.0 | 35.30 | 0.53 | 21.10 | 4.46 | 9.10 | 249.5 |
| North Bay | 17-5756-52313 | Whitewater | 471354 | 800005 | 19/05/2004 | 19.46 | 8.41 | 61.3 | 40.83 | 0.55 | 4.56 | 2.64 | 5.50 | 215.3 |
| SSM | 17-3486-51441 | Admiral (Duck) | 462613 | 825800 | 05/05/2004 | 3.69 | 6.47 | 23.0 | 15.32 | 0.34 | 27.97 | 4.04 | 7.60 | 207.7 |
| SSM | 17-3382-51620 | Burns | 463540 | 830651 | 05/05/2004 | 0.59 | 5.93 | 19.0 | 12.65 | 0.00 | 2.70 | 0.86 | 3.15 | 98.7 |
| SSM | 17-3792-51405 | Canyon | 462436 | 823414 | 04/05/2004 | 8.43 | 6.82 | 35.7 | 23.78 | 0.09 | 7.63 | 2.22 | 7.90 | 245.7 |
| SSM | 17-3423-51340 | Chiblow | 462050 | 830218 | 05/05/2004 | 4.32 | 6.07 | 28.0 | 18.65 | 0.00 | 4.15 | 2.20 | 4.95 | 144.9 |
| SSM | 17-3290-51439 | Constance | 462548 | 831328 | 05/05/2004 | 10.47 | 6.98 | 43.9 | 29.24 | 0.72 | 14.17 | 3.91 | 11.50 | 274.9 |
| SSM | 17-3039-51641 | Darragh | 463615 | 833331 | 11/05/2004 | 5.93 | 6.77 | 28.5 | 18.98 | 0.01 | 13.22 | 3.96 | 5.90 | 358.7 |
| SSM | 17-3465-51920 | Daystar | 465150 | 830054 | 05/05/2004 | 8.18 | 6.66 | 32.0 | 21.31 | 0.06 | 19.41 | 3.92 | 6.70 | 204.2 |
| SSM | 17-2752-51845 | Deil (Devil's) | 464641 | 835640 | 11/05/2004 | 5.39 | 6.84 | 26.1 | 17.38 | 0.01 | 11.84 | 3.91 | 4.90 | 242.4 |
| SSM | 17-3746-51867 | Dubbelewe | 464930 | 823844 | 05/05/2004 | 3.28 | 6.42 | 19.3 | 12.85 | 0.00 | 5.99 | 2.41 | 6.90 | 203.3 |


| DISTRICT | WBY LID | LAKE NAME | LAT | LONG | DATE | Alkalinity (mg/L) | pH | Conductivity ( $u$ mhos/cm) | $\begin{gathered} \hline \text { TDS } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | Turbidity (NTU) | $\begin{aligned} & \hline \text { Colour } \\ & \text { (TCU) } \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \mathrm{DOC} \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$ | Phosphorous ( $u \mathrm{~g} / \mathrm{L}$ ) | $\begin{gathered} \hline \text { TKN } \\ (u \mathrm{~g} / \mathrm{L}) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSM | 17-3320-51621 | East Caribou | 463537 | 831130 | 05/05/2004 | 4.07 | 6.45 | 24.0 | 15.98 | 0.00 | 15.79 | 3.27 | 5.20 | 173.1 |
| SSM | 17-2815-51794 | Fern | 464405 | 835136 | 11/05/2004 | 6.46 | 6.77 | 28.7 | 19.11 | 0.01 | 13.25 | 3.89 | 4.95 | 376.2 |
| SSM | 17-3634-51607 | Flack | 463516 | 824649 | 05/05/2004 | 5.64 | 6.73 | 33.9 | 22.58 | 0.00 | 4.72 | 2.86 | 5.05 | 169.1 |
| SSM | 17-2933-51822 | Garden | 464554 | 834224 | 11/05/2004 | 7.01 | 6.69 | 31.7 | 21.11 | 0.12 | 47.03 | 7.82 | 7.10 | 371.4 |
| SSM | 17-3762-51303 | Grandeur | 461904 | 823631 | 04/05/2004 | 8.40 | 6.96 | 77.6 | 51.68 | 0.00 | 18.86 | 3.79 | 8.80 | 240.1 |
| SSM | 17-3500-51516 | Keelor | 463012 | 825726 | 05/05/2004 | 3.71 | 6.50 | 21.9 | 14.59 | 0.00 | 18.08 | 3.43 | 8.10 | 211.2 |
| SSM | 17-3509-51882 | Kindiogami | 464957 | 825717 | 05/05/2004 | 10.33 | 6.84 | 37.6 | 25.04 | 0.00 | 19.21 | 3.01 | 6.65 | 167.5 |
| SSM | 17-3006-52333 | Lawer | 471323 | 833800 | 11/05/2004 | 6.82 | 6.59 | 29.2 | 19.45 | 0.05 | 90.31 | 12.89 | 9.50 | 404.1 |
| SSM | 17-3813-51665 | Little Sister | 463835 | 823300 | 04/05/2004 | 4.68 | 6.64 | 27.6 | 18.38 | 0.00 | 3.75 | 1.16 | 7.30 | 143.6 |
| SSM | 17-3078-52210 | Lodestone | 470651 | 833206 | 11/05/2004 | 6.83 | 6.80 | 27.3 | 18.18 | 0.01 | 26.53 | 6.26 | 5.80 | 263.7 |
| SSM | 17-3585-51264 | Magog (Granary) | 461632 | 825027 | 04/05/2004 | 17.78 | 9.42 | 58.3 | 38.83 | 0.48 | 18.14 | 3.86 | 7.10 | 266.7 |
| SSM | 16-6811-52113 | Mamainse | 470158 | 843657 | 11/05/2004 | 2.82 | 6.46 | 19.7 | 13.12 | 0.01 | 5.90 | 2.17 | 3.85 | 184.7 |
| SSM | 17-3797-51421 | McCabe | 462524 | 823357 | 04/05/2004 | 9.02 | 7.01 | 374.0 | 249.08 | 0.00 | 4.83 | 2.03 | 4.35 | 195.3 |
| SSM | 17-3678-51289 | McGiverin | 461809 | 824259 | 04/05/2004 | 13.43 | 7.95 | 46.2 | 30.77 | 0.11 | 23.25 | 4.76 | 7.75 | 255.5 |
| SSM | 17-3090-52347 | Megisan | 471456 | 833125 | 11/05/2004 | 11.76 | 7.04 | 39.8 | 26.51 | 0.01 | 42.11 | 7.76 | 6.25 | 273.1 |
| SSM | 17-2857-52090 | Morrison | 470007 | 834907 | 11/05/2004 | 3.87 | 6.48 | 22.9 | 15.25 | 0.01 | 15.41 | 4.51 | 4.60 | 209.4 |
| SSM | 16-7200-51762 | Northland (Loon) | 464221 | 840719 | 11/05/2004 | 2.75 | 6.29 | 19.6 | 13.05 | 0.01 | 28.10 | 5.21 | 5.40 | 244.1 |
| SSM | 17-3053-51969 | Ranger | 465343 | 833317 | 11/05/2004 | 7.48 | 6.91 | 32.5 | 21.65 | 0.01 | 8.22 | 3.23 | 3.65 | 162.6 |
| SSM | 17-3843-51532 | Rochester | 463132 | 823049 | 04/05/2004 | 3.13 | 6.35 | 22.0 | 14.65 | 0.56 | 27.91 | 4.79 | 22.50 | 436.0 |
| SSM | 17-3822-51676 | Rosemarie | 463920 | 823224 | 04/05/2004 | 5.07 | 6.69 | 28.5 | 18.98 | 0.00 | 5.99 | 2.04 | 9.55 | 188.8 |
| SSM | 17-3298-51798 | Seymour | 464507 | 831349 | 05/05/2004 | 7.71 | 6.85 | 30.5 | 20.31 | 0.00 | 23.34 | 4.32 | 7.90 | 212.7 |
| SSM | 17-3008-51554 | Skookum | 463127 | 833539 | 11/05/2004 | 5.69 | 6.83 | 29.9 | 19.91 | 0.01 | 7.85 | 2.81 | 5.60 | 194.6 |
| SSM | 17-3629-51531 | Ten Mile | 463121 | 824718 | 05/05/2004 | 4.85 | 6.72 | 26.9 | 17.92 | 0.00 | 2.10 | 1.28 | 4.75 | 109.3 |
| SSM | 17-3635-51676 | Tenfish | 463852 | 824609 | 05/05/2004 | 3.44 | 6.45 | 22.4 | 14.92 | 0.00 | 5.68 | 2.46 | 5.70 | 131.8 |
| SSM | 17-3398-51886 | Three Lakes | 464928 | 830603 | 11/05/2004 | 33.84 | 7.68 | 89.2 | 59.41 | 0.01 | 2.79 | 0.86 | 5.70 | 408.9 |
| SSM | 17-3342-51796 | Toodee | 464505 | 831013 | 05/05/2004 | 19.23 | 9.15 | 57.5 | 38.30 | 0.00 | 19.24 | 4.25 | 6.35 | 209.2 |
| SSM | 16-7076-51899 | Tupper | 464957 | 841639 | 11/05/2004 | 4.92 | 6.65 | 20.7 | 13.79 | 0.16 | 21.13 | 4.79 | 6.80 | 306.3 |
| SSM | 16-7101-51724 | Upper Island (Island) | 464022 | 841500 | 11/05/2004 | 6.43 | 6.82 | 47.2 | 31.44 | 0.01 | 16.05 | 3.72 | 6.25 | 246.0 |
| SSM | 17-3393-51732 | White Bear | 464157 | 830625 | 05/05/2004 | 7.87 | 6.87 | 30.3 | 20.18 | 0.00 | 4.68 | 2.36 | 4.45 | 127.2 |
| Sudbury | 17-4304-51587 | Acheson | 463448 | 815417 | 04/05/2004 | 3.07 | 6.32 | 26.8 | 17.85 | 0.00 | 32.09 | 4.11 | 6.90 | 206.8 |
| Sudbury | 17-4129-51783 | Alces | 464519 | 820823 | 04/05/2004 | 4.76 | 6.59 | 26.2 | 17.45 | 0.43 | 25.19 | 3.52 | 8.30 | 199.5 |
| Sudbury | 17-4523-51979 | Antrim | 465601 | 813733 | 17/05/2004 | 4.95 | 6.66 | 40.5 | 26.97 | 0.09 | 36.15 | 6.09 | 7.85 | 236.1 |
| Sudbury | 17-4281-52070 | Big Squaw (Big Squirrel) | 470050 | 815649 | 17/05/2004 | 3.53 | 6.43 | 26.1 | 17.38 | 0.06 | 32.80 | 6.28 | 6.70 | 211.2 |
| Sudbury | 17-4026-51425 | Folson | 462552 | 821601 | 04/05/2004 | 3.13 | 6.38 | 20.6 | 13.72 | 0.02 | 10.49 | 3.13 | 8.00 | 248.1 |
| Sudbury | 17-4734-51994 | Friday | 465747 | 812034 | 17/05/2004 | 3.36 | 6.38 | 28.1 | 18.71 | 0.01 | 16.30 | 4.09 | 6.00 | 168.2 |
| Sudbury | 17-4514-51934 | Halfway | 465340 | 813817 | 11/05/2004 | 6.78 | 6.91 | 60.6 | 40.36 | 0.01 | 21.96 | 5.33 | 4.60 | 262.5 |
| Sudbury | 17-4564-51144 | Hannah | 461102 | 813355 | 03/05/2004 | 10.13 | 7.11 | 66.1 | 44.02 | 0.00 | 13.23 | 2.98 | 8.35 | 228.1 |
| Sudbury | 17-4099-51964 | Jeanne | 465525 | 821116 | 05/05/2004 | 1.95 | 6.14 | 20.5 | 13.65 | 0.00 | 7.81 | 3.25 | 7.95 | 196.8 |
| Sudbury | 17-4826-51036 | Johnnie (Bushcamp) | 460513 | 811330 | 03/05/2004 | 0.66 | 5.68 | 23.5 | 15.65 | 0.00 | 12.86 | 3.42 | 5.45 | 230.1 |
| Sudbury | 17-4001-51234 | Kecil | 461548 | 821741 | 03/05/2004 | 2.85 | 6.23 | 23.7 | 15.78 | 0.57 | 27.57 | 4.65 | 8.65 | 339.3 |


| DISTRICT | WBY LID | LAKE NAME | LAT | LONG | DATE | Alkalinity (mg/L) | pH | Conductivity (u mhos/cm) | $\begin{gathered} \hline \text { TDS } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | Turbidity (NTU) | $\begin{aligned} & \text { Colour } \\ & \text { (TCU) } \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \text { DOC } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$ | Phosphorous <br> ( $u \mathrm{~g} / \mathrm{L}$ ) | $\begin{gathered} \hline \text { TKN } \\ (u \mathrm{~g} / \mathrm{L}) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sudbury | 17-3921-51464 | Kindle | 462752 | 822418 | 03/05/2004 | 9.06 | 7.03 | 51.0 | 33.97 | 0.00 | 8.27 | 2.48 | 8.00 | 216.3 |
| Sudbury | 17-4154-51623 | Klondyke North | 463638 | 820615 | 04/05/2004 | 1.97 | 6.09 | 20.1 | 13.39 | 0.18 | 22.79 | 3.62 | 6.70 | 194.1 |
| Sudbury | 17-4975-51827 | Kumska | 464747 | 810252 | 18/05/2004 | 3.20 | 6.49 | 27.3 | 18.18 | 0.16 | 29.30 | 4.35 | 5.35 | 451.2 |
| Sudbury | 17-4009-51893 | Lake \# 42 (Foucault Twp) | 465106 | 821759 | 05/05/2004 | 2.56 | 6.17 | 21.4 | 14.25 | 0.21 | 34.39 | 5.94 | 6.70 | 236.9 |
| Sudbury | 17-5110-52189 | Laundrie | 470732 | 805116 | 18/05/2004 | 0.39 | 5.42 | 24.0 | 15.98 | 0.04 | 34.78 | 5.55 | 6.70 | 423.0 |
| Sudbury | 17-4236-51138 | Long (Harrow \# 23) | 461030 | 815921 | 03/05/2004 | 8.24 | 6.78 | 41.2 | 27.44 | 0.23 | 40.01 | 5.99 | 12.05 | 327.8 |
| Sudbury | 17-4113-51461 | Millen | 462752 | 820920 | 04/05/2004 | 3.62 | 6.35 | 22.3 | 14.85 | 0.00 | 10.17 | 3.03 | 6.35 | 194.9 |
| Sudbury | 17-4836-51150 | Peter | 461124 | 811250 | 03/05/2004 | 4.31 | 6.62 | 35.9 | 23.91 | 0.00 | 7.48 | 2.98 | 6.40 | 227.1 |
| Sudbury | 17-3909-51461 | Rangers (Caribou) | 462752 | 822551 | 04/05/2004 | 8.14 | 6.82 | 34.2 | 22.78 | 0.00 | 3.68 | 1.86 | 6.00 | 156.6 |
| Sudbury | 17-5330-51961 | Rawson | 465503 | 803400 | 18/05/2004 | 1.22 | 6.05 | 28.1 | 18.71 | 0.01 | 13.75 | 3.50 | 4.70 | 104.9 |
| Sudbury | 17-4302-51759 | Rushbrook | 464408 | 815444 | 04/05/2004 | 6.80 | 6.71 | 32.6 | 21.71 | 0.32 | 11.64 | 2.66 | 11.95 | 290.1 |
| Sudbury | 17-5156-51907 | Sam Martin | 465211 | 804742 | 18/05/2004 | 2.71 | 6.45 | 29.0 | 19.31 | 0.01 | 15.12 | 3.63 | 4.65 | 210.9 |
| Sudbury | 17-4248-51802 | Shakwa | 464615 | 815912 | 04/05/2004 | 2.74 | 6.22 | 23.9 | 15.92 | 0.00 | 10.62 | 3.12 | 6.70 | 239.9 |
| Sudbury | 17-4277-51933 | Sinaminda | 465309 | 815621 | 17/05/2004 | 5.10 | 6.85 | 27.3 | 18.18 | 0.14 | 12.89 | 3.93 | 6.90 | 208.1 |
| Sudbury | 17-4569-52032 | Sugarbush | 465918 | 813410 | 11/05/2004 | 2.91 | 6.25 | 21.1 | 14.05 | 0.01 | 20.77 | 4.35 | 4.95 | 191.2 |
| Sudbury | 17-4810-51976 | Venetian | 465646 | 811452 | 17/05/2004 | 3.39 | 6.60 | 26.3 | 17.52 | 0.01 | 17.29 | 4.50 | 6.05 | 280.3 |
| Sudbury | 17-4608-51161 | Walker | 461149 | 813038 | 03/05/2004 | 9.43 | 7.00 | 69.7 | 46.42 | 0.00 | 11.32 | 2.88 | 5.55 | 200.9 |
| Sudbury | 17-4923-51272 | Wavy | 461809 | 810533 | 03/05/2004 | -0.09 | 5.16 | 25.9 | 17.25 | 0.07 | 13.98 | 2.85 | 6.20 | 253.2 |
| Timmins | 17-4933-52284 | Leask | 471238 | 810510 | 18/05/2004 | 5.26 | 6.62 | 28.4 | 18.91 | 0.01 | 19.43 | 4.52 | 4.85 | 201.1 |
| Timmins | 17-4728-52266 | Oshawong | 471143 | 812145 | 17/05/2004 | 23.42 | 7.36 | 69.3 | 46.15 | 0.01 | 42.93 | 6.37 | 7.25 | 279.2 |
| Timmins | 17-4860-52213 | Pilon | 470850 | 811105 | 17/05/2004 | 2.23 | 6.36 | 22.6 | 15.05 | 0.03 | 25.39 | 5.37 | 5.30 | 245.7 |
| Timmins | 17-4902-52259 | Prune | 471111 | 810759 | 18/05/2004 | 4.99 | 6.76 | 30.3 | 20.18 | 0.13 | 12.55 | 3.69 | 4.90 | 184.4 |
| Timmins | 17-4971-52299 | Welcome | 471309 | 810231 | 11/05/2004 | 5.83 | 6.87 | 32.5 | 21.65 | 0.01 | 15.41 | 4.89 | 7.85 | 215.9 |
| Wawa | 16-6751-53308 | Goetz | 480640 | 843859 | 11/05/2004 | 33.30 | 7.66 | 93.6 | 62.34 | 0.01 | 8.72 | 2.21 | 4.30 | 166.9 |
| Wawa | 16-6718-52845 | Mijinemungshing | 474136 | 844237 | 11/05/2004 | 3.89 | 6.51 | 19.9 | 13.25 | 0.04 | 26.42 | 5.57 | 5.50 | 228.0 |
| Wawa | 16-6710-52766 | Old Woman | 473721 | 844327 | 11/05/2004 | 2.98 | 6.31 | 17.5 | 11.66 | 0.01 | 17.08 | 4.27 | 4.25 | 199.9 |
| Wawa | 16-6879-53337 | Pivot | 480728 | 842829 | 11/05/2004 | 5.38 | 6.70 | 25.8 | 17.18 | 0.01 | 20.58 | 6.34 | 4.25 | 247.1 |
| Wawa | 16-6606-53045 | Treeby | 475236 | 845105 | 11/05/2004 | 13.90 | 7.28 | 56.9 | 37.90 | 0.01 | 27.57 | 6.00 | 6.60 | 260.8 |

## Appendix 3: Reference points for expected lake trout density and sustainable effort at maximum sustained yield (MSY) - from: Monitoring the state of Ontario's inland lakes fisheries resources: a pilot study (OMNR 2004).

## Lake trout density at MSY

Simulations based on the exploitation model developed by Shuter et al. (1998) were run to estimate the abundance of adult lake trout when populations are exploited at MSY levels (Janoscik and Lester 2003). Because lake trout typically grow to larger sizes on larger lakes, abundance at MSY is inversely related to lake area. The results imply the following relationship between density of mature fish ( $D_{m}$, \# fish/ha) and asymptotic length:

$$
\begin{equation*}
D_{m}=1112 e^{-0.105 L_{\infty}} \tag{A3.1}
\end{equation*}
$$

This formula assumes an initial growth rate ( $\omega$ ) of $10 \mathrm{~cm} / \mathrm{yr}$. Variation in growth rate affects this relationship, but the effect is small for the range of $\omega$ observed in lake trout.

To apply equation A1.1 in calculating an abundance reference point for each lake, we used catch data to estimate $L_{\infty}$. Pauly (1984) recommends using maximum observed length ( $L_{\text {max }}$ ) to estimate asymptotic length:

$$
\begin{equation*}
L_{\infty}=\frac{L_{\max }}{0.95} \tag{A3.2}
\end{equation*}
$$

This approach does not work well for lake trout because small bodied populations often contain a few very large lake trout which do not represent the population at large, but rather a small sub-population that sustains higher growth by feeding on lake trout. Following the guidance of Janoscik and Lester (2003), $L_{\text {max }}$ was calculated as the mean of the 5 largest fish within the 95 th percentile of observed lengths (i.e. largest $5 \%$ of the sample is ignored) and an initial estimate of $L_{\infty}$ was obtained from equation A1.2. When this estimate was based on a sample size < 50 fish, a correction for small sample size was applied: the initial estimate was divided by $1-e^{0-.039(n+32)}$ where $n$ is the sample size. When the samples size was very small (i.e. $\mathrm{n}<10$ ), a formula based on lake area (Shuter et al. 1998) was used:

$$
\begin{equation*}
L_{\infty}=37.15 \text { Area }^{0.071} \tag{A3.3}
\end{equation*}
$$

## Sustainable angling effort at MSY

Based on the Shuter et al. (1998) exploitation model, Lester and Dunlop (2004) developed the following formula for calculating effort at MSY:

$$
\begin{equation*}
E_{m s y}=10^{0.0054+\frac{1.892}{\text { Area }} \text { 0.16 }-0.222 \log _{10} \text { TDS }+0.073 \log _{10} \text { Area } * \log _{10} \text { TDS }} \tag{A3.4}
\end{equation*}
$$

This formula implies $\mathrm{E}_{\mathrm{msy}}$ ranges from xx to xx angler-hrs.ha depending on lake area and TDS.


| District | Lake Name | WBY LID | FN2 Code | Date | CUE (all strata) |  | CUE (> 6m) |  | \# Fish | Fork Length (mm) |  |  |  | Weight (g) |  |  |  | Condition - Fulton's |  |  |  | Age (years) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | \# Sets | CUE | \# Sets | CUE |  | Mean | Med | Min | Max |
| Chapleau | Blackfish | 16-7142-53440 | 21D_IA03_BLA | 21/08/2003 | 40 | 0.48 | 26 | 0.73 | 15 | 503 | 395 | 348 | 947 | 968 | 690 | 44 | 3320 | 1.28 | 1.29 | 0.94 | 1.48 | 7.6 | 6 | 2 | 17 |
| Chapleau | Windermere | 17-2934-53143 | 21D_IA03_WIN | 26/08/2003 | 56 | 0.02 | 35 | 0.00 | 1 | 627 | 627 | 627 | 627 | 3100 | 3100 | 3100 | 3100 | 1.26 | 1.26 | 1.26 | 1.26 | 17.0 | 17 | 17 | 17 |
| Kirkland | Greenwater | 17-5561-52598 | 25D_IA02_GRE | 09/08/2002 | 24 | 2.54 | 14 | 3.21 | 61 | 395 | 423 | 114 | 591 | 787 | 860 | 12 | 2360 | 1.13 | 1.09 | 0.81 | 3.01 | 9.5 | 8 | 3 | 26 |
| Kirkland | Lady Sydney | 17-5599-52502 | 25D_IA01_LAD | 24/08/2001 | 60 | 0.28 | 26 | 0.65 | 16 | 476 | 441 | 212 | 810 | 1988 | 1500 | 89 | 6500 | 1.09 | 1.10 | 0.89 | 1.43 | 10.7 | 8 | 3 | 28 |
| Kirkland | Munroe | 17-5606-52675 | 25D_IA02_MUN | 22/08/2002 | 24 | 1.50 | 12 | 3.00 | 36 | 325 | 263 | 100 | 671 | 647 | 168 | 9 | 3300 | 0.99 | 0.97 | 0.78 | 1.31 | 7.5 | 7 | 1 | 19 |
| Kirkland | Smith | 17-5182-52469 | 25D_IA02_SMI | 30/08/2002 | 40 | 1.43 | 21 | 2.67 | 57 | 285 | 287 | 94 | 531 | 444 | 240 | 7 | 1900 | 1.10 | 1.08 | 0.78 | 1.47 | 4.8 | 5 | 0 | 12 |
| North Bay | Barter | 17-5674-52374 | 36D_IA02_BAR | 12/07/2002 | 80 | 0.99 | 26 | 2.77 | 79 | 362 | 384 | 129 | 540 | 672 | 600 | 16 | 2080 | 1.06 | 1.06 | 0.59 | 1.50 | 6.8 | 6 | 2 | 18 |
| North Bay | Benner | 17-5288-52236 | 35D_IA01_BEN | 02/08/2001 | 46 | 1.26 | 15 | 3.53 | 57 | 265 | 245 | 95 | 453 | 297 | 158 | 8 | 1275 | 1.11 | 1.11 | 0.66 | 1.42 | 4.2 | 4 | 1 | 18 |
| North Bay | Bluesucker | 17-5298-52239 | 36D_IA00_BLU | 30/08/2000 | 40 | 1.03 | 24 | 1.67 | 41 | 346 | 362 | 125 | 475 | 553 | 530 | 20 | 1450 | 1.12 | 1.14 | 0.79 | 1.44 | 3.7 | 3 | 1 |  |
| North Bay | Deschamps | 17-5603-51797 | 33D_IA03_DES | 10/08/2003 | 32 | 0.09 | 18 | 0.17 | 3 | 414 | 417 | 381 | 445 | 860 | 840 | 620 | 1120 | 1.18 | 1.16 | 1.12 | 1.27 | 8.7 | 8 | 6 | 12 |
| North Bay | Iron | 17-5491-52005 | 33D_IA04_IRO | 20/08/2004 | 32 | 1.56 | 18 | 2.78 | 50 | 243 | 204 | 128 | 610 | 279 | 79 | 10 | 2650 | 0.98 | 0.93 | 0.47 | 1.91 |  |  |  |  |
| North Bay | Jim Edwards | 17-5431-52386 | 36D_IA02_JIM | 19/07/2002 | 72 | 0.13 | 18 | 0.50 | 9 | 286 | 217 | 116 | 600 | 567 | 105 | 15 | 2420 | 0.96 | 0.93 | 0.76 | 1.15 |  |  |  |  |
| North Bay | Linger | 17-5367-52152 | 35D_IA02_LIN | 25/07/2002 | 52 | 0.29 | 6 | 2.33 | 15 | 299 | 285 | 163 | 480 | 376 | 250 | 46 | 1180 | 1.08 | 1.08 | 0.94 | 1.27 |  |  |  |  |
| North Bay | McGiffin | 17-5401-52454 | 36D_IA02_MCG | 16/08/2002 | 32 | 0.75 | 18 | 0.94 | 24 | 337 | 358 | 103 | 525 | 665 | 595 | 8 | 1780 | 1.10 | 1.17 | 0.73 | 1.32 | 7.7 | 7 | 1 | 16 |
| North Bay | Pilgrim | 17-5259-52267 | 35D_IA04_PIL | 22/07/2004 | 40 | 4.60 | 26 | 6.69 | 184 | 297 | 300 | 89 | 455 | 306 | 260 | 4 | 1100 | 0.98 | 0.98 | 0.57 | 1.26 | 5.2 | 5 | 0 | 15 |
| North Bay | Rodd | 17-5274-52242 | 36D_IA01_ROD | 09/08/2001 | 36 | 0.19 | 6 | 1.00 | 7 | 314 | 390 | 119 | 435 | 525 | 710 | 15 | 970 | 1.08 | 1.09 | 0.89 | 1.20 | 4.7 | 6 | 1 | 8 |
| North Bay | Sugar | 17-5670-52431 | 36D_IA01_SUG | 17/08/2001 | 60 | 0.18 | 26 | 0.42 | 11 | 352 | 339 | 130 | 550 | 1074 | 630 | 27 | 3250 | 1.53 | 1.44 | 1.23 | 2.05 | 5.1 | 5.5 | 1 | 11 |
| North Bay | Turner | 17-5695-52367 | 36D_IA01_TUR | 17/08/2001 | 60 | 0.17 | 26 | 0.31 | 10 | 507 | 582 | 109 | 734 | 2519 | 2525 | 10 | 6100 | 1.27 | 1.37 | 0.77 | 1.54 | 5.6 | 7 | 1 | 10 |
| SSM | Admiral (Duck) | 17-3486-51441 | 34D_IA03_DUC | 09/08/2003 | 24 | 0.00 | 10 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SSM | Bobowash | 17-3635-51568 | 34D_IA03_BOB | 01/08/2003 | 32 | 0.63 | 18 | 0.89 | 20 | 431 | 508 | 90 | 560 | 1373 | 1545 | 6 | 2480 | 1.21 | 1.21 | 0.80 | 1.63 | 11.6 | 11 | 1 | 22 |
| SSM | Burns | 17-3382-51620 | 34D_IA01_BUR | 24/08/2001 | 40 | 1.05 | 26 | 1.54 | 42 | 306 | 276 | 135 | 573 | 442 | 187 | 20 | 2380 | 1.00 | 0.95 | 0.70 | 1.57 |  |  |  |  |
| SSM | Canyon | 17-3792-51405 | 34D_IA03_CAN | 11/09/2003 | 24 | 0.17 | 10 | 0.20 | 4 | 560 | 583 | 415 | 660 | 2470 | 2630 | 1020 | 3600 | 1.33 | 1.33 | 1.25 | 1.43 | 7.0 | 6 | 4 | 11 |
| SSM | Christman | 17-3675-51601 | 34D_IA03_JIM | 05/09/2003 | 24 | 0.79 | 10 | 1.70 | 19 | 352 | 366 | 241 | 516 | 528 | 550 | 150 | 1440 | 1.08 | 1.05 | 0.93 | 1.26 |  |  |  |  |
| SSM | Darragh | 17-3039-51641 | 34D_IA03_DAR | 16/08/2003 | 40 | 1.95 | 26 | 3.00 | 78 | 310 | 311 | 58 | 600 | 502 | 285 | 1 | 3100 | 1.03 | 0.99 | 0.72 | 1.44 | 5.1 | 4 | 0 | 18 |
| SSM | Daystar | 17-3465-51920 | 34D_IA03_DAY | 13/08/2003 | 32 | 0.75 | 18 | 0.94 | 24 | 351 | 324 | 219 | 595 | 632 | 358 | 105 | 3300 | 1.08 | 1.05 | 0.84 | 1.57 | 7.6 | 7 | 3 | 14 |
| SSM | Dollyberry | 17-3633-51558 | 34D_IA03_DOL | 06/09/2003 | 40 | 0.45 | 26 | 0.58 | 18 | 360 | 366 | 127 | 550 | 768 | 545 | 21 | 1930 | 1.08 | 1.11 | 0.80 | 1.31 |  |  |  |  |
| SSM | Dubbelewe | 17-3746-51867 | 34D_IA03_DUB | 25/07/2003 | 32 | 0.25 | 18 | 0.44 | 8 | 631 | 634 | 581 | 683 | 3213 | 3175 | 2150 | 4300 | 1.26 | 1.27 | 1.03 | 1.35 | 10.5 | 11.5 | 5 | 13 |
| SSM | East Caribou | 17-3320-51621 | 34D_IA03_ECA | 06/08/2003 | 40 | 0.35 | 24 | 0.33 | 14 | 382 | 381 | 210 | 558 | 896 | 685 | 112 | 2090 | 1.12 | 1.16 | 0.85 | 1.34 | 6.1 | 4 | 2 | 15 |
| SSM | Keelor | 17-3500-51516 | 34D_IA03_KEE | 30/07/2003 | 40 | 2.45 | 26 | 3.77 | 98 | 329 | 328 | 79 | 570 | 464 | 338 | 5 | 2500 | 0.99 | 0.97 | 0.69 | 1.60 | 7.7 | 6 | 1 | 38 |
| SSM | Little Sister | 17-3813-51665 | 34D_IA04_LIT | 09/07/2004 | 24 | 2.21 | 10 | 2.80 | 53 | 369 | 374 | 169 | 528 | 666 | 620 | 57 | 1600 | 1.13 | 1.16 | 0.95 | 1.26 |  |  |  |  |
| SSM | May | 17-3852-51434 | 34D_IA02_MAY | 30/08/2002 | 88 | 0.17 | 27 | 0.44 | 15 | 433 | 460 | 222 | 580 | 1240 | 1320 | 112 | 2500 | 1.20 | 1.18 | 1.02 | 1.36 |  |  |  |  |
| SSM | McCabe | 17-3797-51421 | 34D_IA02_MCC | 16/08/2002 | 80 | 0.24 | 26 | 0.73 | 19 | 444 | 462 | 153 | 590 | 1219 | 1180 | 25 | 2220 | 1.18 | 1.20 | 0.68 | 1.37 |  |  |  |  |
| SSM | McGiverin | 17-3678-51289 | 34D_IA02_MCG | 09/09/2002 | 42 | 1.31 | 30 | 1.37 | 55 | 311 | 289 | 134 | 630 | 468 | 240 | 20 | 4000 | 1.03 | 1.01 | 0.79 | 1.60 | 5.2 | 5 | 0 | 12 |


| District | Lake Name | WBY LID | FN2 Code | Date | CUE (all strata) |  | CUE ( $>6 \mathrm{~m}$ ) |  | \# Fish | Fork Length (mm) |  |  |  | Weight (g) |  |  |  | Condition - Fulton's |  |  |  | Age (years) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | \# Sets | CUE | \# Sets | CUE |  | Mean | Med | Min | Max |
| SSM | Rochester | 17-3843-51532 | 34D_IA04_ROC | 15/07/2004 | 24 | 0.21 | 10 | 0.50 | 5 | 487 | 460 | 379 | 630 | 1828 | 1300 | 690 | 3900 | 1.35 | 1.34 | 1.13 | 1.56 |  |  |  |  |
| SSM | Rosemarie | 17-3822-51676 | 34D_IA03_ROS | 10/08/2003 | 32 | 1.13 | 18 | 2.00 | 36 | 306 | 302 | 109 | 518 | 462 | 310 | 20 | 2100 | 1.18 | 1.16 | 0.96 | 1.54 | 4.7 | 3.5 | 1 | 24 |
| SSM | Samried | 17-3658-51570 | 34D_IA03_SAM | 01/08/2003 | 32 | 0.81 | 18 | 1.17 | 26 | 353 | 350 | 160 | 604 | 648 | 400 | 38 | 2350 | 1.00 | 0.99 | 0.80 | 1.25 |  |  |  |  |
| SSM | Semiwite | 17-3712-51594 | 34D_IA03_SEM | 07/07/2003 | 48 | 2.00 | 28 | 3.32 | 96 | 271 | 260 | 98 | 550 | 309 | 190 | 8 | 2040 | 1.01 | 1.01 | 0.78 | 1.23 |  |  |  |  |
| SSM | Skookum | 17-3008-51554 | 34D_IA03_SKO | 17/07/2003 | 24 | 0.00 | 10 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SSM | Ten Mile | 17-3629-51531 | 34D_IA03_TEN | 09/07/2003 | 56 | 2.13 | 36 | 2.81 | 119 | 333 | 358 | 82 | 627 | 579 | 550 | 5 | 3500 | 1.14 | 1.15 | 0.69 | 1.65 | 6.8 |  |  | 20 |
| SSM | Tenfish | 17-3635-51676 | 34D_IA04_TEN | 29/07/2004 | 32 | 3.63 | 19 | 5.68 | 116 | 292 | 299 | 91 | 692 | 423 | 308 | 7 | 4350 | 1.12 | 1.13 | 0.83 | 1.42 | 4.5 | 4 | 0 | 18 |
| SSM | Three Lakes | 17-3398-51886 | 34D_IA03_THR | 13/07/2003 | 32 | 0.31 | 18 | 0.44 | 10 | 508 | 510 | 392 | 611 | 1854 | 1840 | 700 | 3200 | 1.32 | 1.31 | 1.05 | 1.55 | 7.3 |  | 4 | 14 |
| SSM | Toodee | 17-3342-51796 | 34D_IA03_TOO | 17/08/2003 | 40 | 1.13 | 24 | 1.71 | 45 | 359 | 361 | 95 | 550 | 662 | 515 | 10 | 1975 | 1.08 | 1.10 | 0.80 | 1.36 | 6.4 |  | 1 | 19 |
| SSM | White Bear | 17-3393-51732 | 34D_IA03_WH | 01/08/2003 | 46 | 1.76 | 28 | 2.50 | 81 | 320 | 306 | 101 | 526 | 473 | 275 | 9 | 2080 | 0.9 | 0.96 | 0.77 | 1.44 | 5.8 | 5 | 1 | 25 |
| Sudbury | Acheson | 17-4304-51587 | 33D_IA04_ACH | 06/08/2004 | 40 | 1.75 | 26 | 2.69 | 70 | 378 | 371 | 171 | 593 | 658 | 565 | 46 | 2160 | 1.0 | 1.07 | 0.8 | 1.2 |  |  |  |  |
| Sudbury | Antrim | 17-4523-51979 | 35D_IA04_ANT | 05/08/2004 | 24 | 0.04 | 10 | 0.10 | 1 | 104 | 10 | 104 | 104 | 11 | 11 | 11 | 11 | 0.93 | 0.93 | 0.9 | 0.9 |  |  |  |  |
| Sudbury | Bear | 17-4652-51149 | 35D_IA03_BEA | 15/08/2003 | 48 | 0.46 | 28 | 0.79 | 22 | 388 | 375 | 241 | 601 | 742 | 545 | 120 | 2820 | 1.06 | 1.03 | 0.8 | 1.45 | 6.2 | 6 |  | 14 |
| Sudbury | Big Squaw | 17-4281-52070 | 35D_IA03_BIG | 29/08/2003 | 32 | 0.50 | 18 | 0.67 | 16 | 395 | 329 | 196 | 630 | 1003 | 349 | 70 | 3200 | 1.00 | 0.96 | 0.84 | 1.2 | 7. | 5 | 2 | 18 |
| Sudbury | Fairbank | 17-4672-51457 | 35D_IA03_FAI | 29/08/2003 | 48 | 0.50 | 28 | 0.86 | 24 | 357 | 311 | 234 | 599 | 688 | 292 | 114 | 2900 | 1.03 | 1.01 | 0.80 | 1.35 |  |  |  |  |
| Sudbury | Folson | 17-4026-51425 | 35D_IA03_FOL | 05/09/2003 | 40 | 0.38 | 25 | 0.60 | 15 | 376 | 410 | 143 | 547 | 758 | 650 | 27 | 1940 | 1.07 | 1.06 | 0.92 | 1.29 | 5.5 | 6.5 | 2 | 8 |
| Sudbury | Foucault \# 42 | 17-4009-51893 | 35D_IA03_L42 | 13/08/2003 | 24 | 0.50 | 10 | 0.80 | 12 | 396 | 381 | 166 | 615 | 1026 | 665 | 40 | 3000 | 1.17 | 1.11 | 0.87 | 1.56 | 7.8 | 7 | 3 | 13 |
| Sudbury | Halfway | 17-4514-51934 | 35D_IA03_HAL | 25/07/2003 | 32 | 0.59 | 16 | 1.19 | 19 | 290 | 287 | 147 | 462 | 371 | 235 | 31 | 1190 | 1.01 | 0.98 | 0.91 | 1.21 | 3.9 | 4 | 2 | 6 |
| Sudbury | Ishmael | 17-4542-510 | 35D_IA03_ISH | 28/08/2003 | 24 | 0.08 | 10 | 0.2 | 2 | 44 | 44 | 274 | 621 | 1545 | 1545 | 190 | 290 | 1.07 | 1.07 | 0.92 | 1.21 | 6.5 | 6.5 | 3 | 10 |
| Sudbury | Jeanne | 17-4099-51964 | 35D_IA04_JEA | 30/07/2004 | 41 | 0.05 | 27 | 0.07 | 2 | 613 | 613 | 590 | 635 | 2500 | 2500 | 2000 | 3000 | 1.07 | 1.07 | 0.97 | 1.17 |  |  |  |  |
| Sudbury | Kettyle | 17-5356-51847 | 35D_IA00_KET | 31/08/2000 | 32 | 0.53 | 18 | 0.94 | 17 | 282 | 232 | 76 | 487 | 421 | 141 |  | 1400 | 1.06 | 1.07 | 0.52 | 1.40 | 2.6 | 2 | 0 | 7 |
| Sudbury | Klondyke North | 17-4154-51623 | 35D_IA02_NOR | 02/08/2002 | 24 | 0.38 | 12 | 0.58 | 9 | 422 | 404 | 225 | 558 | 1062 | 760 | 130 | 2100 | 1.22 | 1.21 | 1.09 | 1.34 | 8.8 | 7 | 4 | 16 |
| Sudbury | Kumska | 17-4975-51827 | 33D_IA04_KUM | 12/08/2004 | 40 | 0.20 | 25 | 0.28 | 8 | 525 | 528 | 391 | 683 | 1749 | 1620 | 740 | 3550 | 1.16 | 1.25 | 0.76 | 1.39 |  |  |  |  |
| Sudbury | Michaud | 17-4821-51845 | 35D_IA04_MIC | 20/08/2004 | 40 | 0.50 | 26 | 0.77 | 20 | 360 | 375 | 187 | 46 | 593 | 610 | 74 | 112 | 1.14 | 1.1 | 0.9 | 1.34 |  |  |  |  |
| Sudbury | Millen | 17-4113-51461 | 35D_IA03_MIL | 18/07/2003 | 32 | 0.59 | 17 | 0.76 | 19 | 320 | 282 | 172 | 765 | 591 | 340 | 50 | 4200 | 1.05 | 1.04 | 0.85 | 1.5 | 6.0 | 4.5 | 2 | 27 |
| Sudbury | Nelson | 17-4928-51746 | 35D_IA04_NEL | 07/08/2004 | 48 | 1.33 | 28 | 2.29 | 64 | 292 | 294 | 89 | 730 | 457 | 312 |  | 5500 | 1.08 | 1.08 | 0.83 | 1.63 |  |  |  |  |
| Sudbury | Pedro | 17-5352-51958 | 35D_IA04_PED | 22/07/2004 | 24 | 0.63 | 8 | 1.63 | 15 | 447 | 474 | 48 | 542 | 1264 | 1300 |  | 2100 | 1.18 | 1.21 | 0.74 | 1.33 |  |  |  |  |
| Sudbury | Rangers (Caribou) | 17-3909-51461 | 35D_IA02_CAR | 25/07/2002 | 40 | 3.00 | 26 | 3.58 | 120 | 293 | 272 | 125 | 493 | 358 | 201 | 17 | 1300 | 1.09 | 1.09 | 0.68 | 2.10 | 5.6 | 5 | 2 | 11 |
| Sudbury | Rawson | 17-5330-51961 | 35D_IA03_RAW | 22/08/2003 | 40 | 1.88 | 26 | 2.88 | 75 | 203 | 198 | 120 | 430 | 147 | 88 | 12 | 1060 | 1.14 | 1.15 | 0.66 | 1.6 | 5 | 4 | 2 | 13 |
| Sudbury | Rushbrook | 17-4302-51759 | 35D_IA02_RUS | 29/08/2002 | 30 | 0.13 | 16 | 0.25 | 4 | 415 | 441 | 265 | 515 | 995 | 1063 | 205 | 1650 | 1.20 | 1.22 | 1.10 | 1.24 | 8.3 | 8 | 4 | 13 |
| Sudbury | Sinaminda | 17-4277-51933 | 35D_IA03_SIN | 09/07/2003 | 56 | 0.14 | 36 | 0.22 | 8 | 356 | 338 | 272 | 568 | 589 | 385 | 225 | 2000 | 1.08 | 1.10 | 0.9 | 1.21 | 8.3 | 7.5 | 4 | 19 |
| Sudbury | Sugarbush | 17-4569-52032 | 35D_IA03_SUG | 07/09/2003 | 32 | 1.22 | 18 | 2.00 | 39 | 329 | 305 | 216 | 596 | 493 | 320 | 90 | 2100 | 1.08 | 1.08 | 0.89 | 1.31 | 5.5 | 4 | 2 | 18 |
| Sudbury | Three Narrows | 17-4670-51065 | 35D_IA03_THR | 20/07/2003 | 48 | 0.04 | 29 | 0.07 | 2 | 692 | 692 | 570 | 813 | 4750 | 4750 | 2500 | 7000 | 1.33 | 1.33 | 1.30 | 1.35 |  |  |  |  |
| Timmins | Pilon | 17-4860-52213 | 27D_IA03_PIL | 21/08/2003 | 24 | 0.29 | 10 | 0.70 | 7 | 293 | 243 | 108 | 477 | 600 | 144 | 11 | 1460 | 1.11 | 1.05 | 0.83 | 1.35 | 5.7 | 4 | 1 | 11 |
| Timmins | Welcome | 17-4971-52299 | 27D_IA04_WEL | 28/08/2004 | 48 | 0.15 | 28 | 0.25 | 7 | 261 | 220 | 134 | 404 | 298 | 98 | 21 | 760 | 0.99 | 0.94 | 0.88 | 1.15 |  |  |  |  |


| District | Lake Name | WBY LID | FN2 Code | Date | CUE (all strata) |  | CUE ( $>6 \mathrm{~m}$ ) |  | \# Fish | Fork Length (mm) |  |  |  | Weight (g) |  |  |  | Condition - Fulton's |  |  |  | Age (years) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | \# Sets | CUE | \# Sets | CUE |  | Mean | Med | Min | Max |
| Wawa | Goetz | 16-6751-53308 | 23D IA03 GOE | 17/07/2003 | 32 | 1.91 | 16 | 3.25 | 61 | 285 | 336 | 114 | 403 | 334 | 405 | 11 | 790 | 1.02 | 1.05 | 0.66 | 1.52 | 9.7 | 10 | 2 | 24 |
| Wawa | Mijijemungshing | 16-6718-52845 | 34D_IA03_MIJ | 18/07/2003 | 46 | 1.46 | 28 | 2.25 | 67 | 386 | 408 | 191 | 590 | 779 | 800 | 67 | 2080 | 1.14 | 1.13 | 0.82 | 1.46 | 8.6 | 7 | 2 | 29 |
| Wawa | Old Woman | 16-6710-52766 | 34D_IA04_OLD | 07/08/2004 | 48 | 0.88 | 28 | 1.50 | 42 | 375 | 369 | 123 | 619 | 633 | 508 | 16 | 2775 | 0.93 | 0.94 | 0.67 | 1.17 |  |  |  |  |
| Wawa | Pivot | 16-6879-53337 | 23D_IA03_PIV | 12/07/2003 | 32 | 0.69 | 16 | 0.88 | 22 | 376 | 424 | 109 | 563 | 913 | 800 | 9 | 2260 | 1.08 | 1.09 | 0.61 | 1.39 | 6.8 | 7 | 2 | 19 |
| Wawa | Treeby | 16-6606-53045 | 34D_IA04_TRE | 13/08/2004 | 40 | 1.38 | 26 | 1.88 | 55 | 357 | 370 | 150 | 470 | 546 | 540 | 33 | 1020 | 1.10 | 1.10 | 0.87 | 1.34 | 6.0 | 6 | 1 | 9 |

Maximum $90^{\text {th }}$ Percentile $75^{\text {th }}$ Percentile Median $25^{\text {th }}$ Percentile
$10^{\text {th }}$ Percentile
Minimum
Sample Size (\# of lakes)

| CUE |
| :---: |
| 0.90 |
| 4.60 |
| 2.00 |
| 1.33 |
| 0.59 |
| 0.21 |
| 0.09 |
| 0.00 |
| 73 |
| all strata |


| CUE |
| :---: |
| 1.47 |
| 6.69 |
| 3.21 |
| 2.33 |
| 0.94 |
| 0.44 |
| 0.20 |
| 0.00 |
| 73 |
| $>6 \mathrm{~m}$ |


| FLEN |
| ---: |
| 352 |
| 508 |
| 444 |
| 382 |
| 352 |
| 306 |
| 285 |
| 203 |
| 54 |


| RWT |
| ---: |
| 722 |
| 2519 |
| 1240 |
| 787 |
| 632 |
| 457 |
| 334 |
| 147 |
| 54 |


| COND |
| ---: |
| 1.10 |
| 1.53 |
| 1.20 |
| 1.14 |
| 1.08 |
| 1.03 |
| 0.99 |
| 0.93 |
| 54 |


| AGE |
| ---: |
| 6.4 |
| 11.6 |
| 9.5 |
| 7.6 |
| 6.1 |
| 5.1 |
| 4.2 |
| 2.6 |
| 38 |

Appendix 5: Summary of index netting results for 57 SLIN netting surveys used in the NER state-of-resource analysis (ie. representative lakes assessed using the SLIN standard) including regional reference statistics.

| District | Lake Name | WBY LID | FN2 Code | Standard | Date | Index CUE |  | \# Fish | Fork Length (mm) |  |  |  | Weight (g) |  |  |  | Condition - Fulton's |  |  |  | Age (Years) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | \# Sets | CUE |  | Mean | Med | Min | Max |
| Chapleau | Nemegosenda | 17-3426-53189 | 21D_IA01_NEM | SLIN | 10/05/2001 | 39 | 0.36 | 14 | 658 | 612 | 344 | 1060 | 4619 | 3475 | 400 | 15220 | 1.37 | 1.42 | 0.98 | 1.67 | 10.3 | 10.5 | 7 | 14 |
| Kirkland | Mendelssohn | 17-5595-52642 | 25D_IA01_MEN | SPIN | 22/07/2001 | 60 | 1.25 | 75 | 346 | 324 | 200 | 720 | 569 | 350 | 75 | 4500 | 1.01 | 1.00 | 0.81 | 1.33 |  |  |  |  |
| Kirkland | Midlothian | 17-5001-53061 | 25D_IA00_MID | SLIN | 08/06/2000 | 30 | 1.13 | 34 | 381 | 355 | 195 | 680 | 875 | 473 | 71 | 3721 | 1.06 | 1.06 | 0.95 | 1.18 |  |  |  |  |
| North Bay | Anima Nipissing | 17-5827-52344 | 36D_IA00_ANI | SLIN | 18/05/2000 | 30 | 1.00 | 30 | 439 | 442 | 315 | 550 | 981 | 903 | 260 | 1975 | 1.06 | 1.07 | 0.81 | 1.30 |  |  |  |  |
| North Bay | Clearwater | 17-5533-52097 | 36D_IA99_CLE | SLIN | 14/05/1999 | 30 | 1.97 | 59 | 345 | 348 | 175 | 395 | 367 | 375 | 40 | 617 | 0.87 | 0.85 | 0.66 | 1.33 |  |  |  |  |
| North Bay | Cross | 17-5788-51912 | 36D_IA04_CRO | SLIN | 14/05/2004 | 30 | 0.27 | 8 | 475 | 485 | 307 | 600 | 1281 | 1225 | 200 | 2501 | 1.03 | 1.05 | 0.69 | 1.23 |  |  |  |  |
| North Bay | Cucumber | 17-5521-51877 | NPS_IA99_CUC | SLIN | 14/05/1999 | 30 | 0.80 | 24 | 410 | 410 | 275 | 590 | 791 | 713 | 200 | 2500 | 1.03 | 1.02 | 0.93 | 1.22 |  |  |  |  |
| North Bay | Cummings | 17-5605-51996 | 33D_IA01_CUM | SPIN | 15/08/2001 | 30 | 0.80 | 24 | 380 | 396 | 202 | 734 | 841 | 545 | 75 | 5600 | 1.01 | 0.91 | 0.83 | 1.50 |  |  |  |  |
| North Bay | Dana | 17-5566-51724 | 33D_IA03_DAN | SLIN | 21/05/2003 | 30 | 0.53 | 16 | 312 | 309 | 205 | 482 | 368 | 300 | 70 | 1400 | 1.00 | 0.99 | 0.81 | 1.25 | 2.9 | 3 | 1 | 6 |
| North Bay | Diamond | 17-5580-52276 | 33D_IA03_DIA | SLIN | 15/05/2003 | 30 | 0.30 | 9 | 503 | 440 | 342 | 726 | 2191 | 1075 | 500 | 5300 | 1.28 | 1.25 | 1.12 | 1.51 |  |  |  |  |
| North Bay | Emerald | 17-5515-51958 | 33D_IA99_EME | SLIN | 05/05/1999 | 30 | 1.77 | 53 | 377 | 376 | 272 | 515 | 582 | 500 | 175 | 1750 | 1.02 | 1.00 | 0.80 | 1.28 |  |  |  |  |
| North Bay | Lower Bass | 17-5601-52035 | 36D_IA99_LOW | SLIN | 10/05/1999 | 30 | 1.80 | 54 | 334 | 330 | 203 | 632 | 459 | 350 | 75 | 4100 | 1.03 | 1.00 | 0.71 | 1.62 |  |  |  |  |
| North Bay | Manitou (Devil's) | 17-5548-51889 | 33D_IA99_MAN | SLIN | 05/05/1999 | 30 | 0.53 | 16 | 453 | 449 | 350 | 588 | 1097 | 925 | 450 | 2650 | 1.09 | 1.09 | 0.93 | 1.30 |  |  |  |  |
| North Bay | Marten | 17-5953-51723 | 33D_IA98_MAR | SLIN | 07/05/1998 | 30 | 0.37 | 11 | 418 | 361 | 294 | 584 | 965 | 500 | 260 | 2280 | 1.07 | 1.05 | 0.96 | 1.20 |  |  |  |  |
| North Bay | Obabika | 17-5566-52101 | 33D_IA98_OBA | SLIN | 08/05/1998 | 30 | 0.03 | 1 | 380 | 380 | 380 | 380 | 392 | 392 | 392 | 392 | 0.71 | 0.71 | 0.71 | 0.71 |  |  |  |  |
| North Bay | Turtleshell | 17-5573-51927 | 33D_IA01_TR2 | SLIN | 11/05/2001 | 30 | 1.40 | 42 | 309 | 286 | 215 | 432 | 380 | 230 | 104 | 1100 | 1.09 | 1.09 | 0.83 | 1.36 |  |  |  |  |
| North Bay | Wawiagama (Round) | 17-5476-52058 | 33D_IA01_WAW | SLIN | 15/05/2001 | 30 | 0.50 | 15 | 457 | 490 | 230 | 635 | 1327 | 1200 | 100 | 3000 | 1.07 | 1.06 | 0.82 | 1.27 |  |  |  |  |
| North Bay | Whitewater | 17-5756-52313 | 33D_IA01_WHI | SPIN | 17/08/2001 | 30 | 1.90 | 57 | 314 | 322 | 172 | 488 | 469 | 360 | 52 | 1350 | 1.14 | 1.07 | 0.91 | 1.64 |  |  |  |  |
| SSM | Basswood | 17-3164-51328 | 34D_IA01_BAS | SLIN | 22/05/2001 | 57 | 0.77 | 44 | 453 | 444 | 384 | 704 | 991 | 850 | 600 | 4000 | 1.02 | 1.02 | 0.74 | 1.22 | 6.5 | 6 | 5 | 12 |
| SSM | Chiblow | 17-3423-51340 | 34D_IA02_CHI | SLIN | 29/05/2002 | 60 | 0.65 | 39 | 412 | 425 | 227 | 589 | 785 | 750 | 106 | 2220 | 1.01 | 0.99 | 0.83 | 1.19 |  |  |  |  |
| SSM | Constance | 17-3290-51439 | 34D_IA03_CON | SLIN | 22/05/2003 | 30 | 0.93 | 28 | 637 | 630 | 350 | 830 | 3881 | 3336 | 452 | 8200 | 1.34 | 1.19 | 1.05 | 1.88 | 8.6 | 6 | 4 | 20 |
| SSM | Cumming | 17-3191-51490 | 34D_IA03_CUM | SLIN | 13/05/2003 | 30 | 0.97 | 29 | 411 | 437 | 201 | 620 | 973 | 900 | 40 | 3290 | 1.06 | 1.05 | 0.49 | 1.45 |  |  |  |  |
| SSM | Deil (Devil's) | 17-2752-51845 | 34D_IA00_DEV | SLIN | 03/05/2000 | 30 | 0.63 | 19 | 585 | 567 | 520 | 752 | 2617 | 2450 | 1730 | 4400 | 1.28 | 1.28 | 1.03 | 1.47 |  |  |  |  |
| SSM | Denman (L. Chiblow) | 17-3360-51357 | 34D_IA02_LIT | SLIN | 25/05/2002 | 75 | 2.43 | 182 | 359 | 329 | 240 | 667 | 605 | 373 | 140 | 3150 | 1.04 | 1.04 | 0.69 | 1.33 |  |  |  |  |
| SSM | Dunlop | 17-3673-51503 | 34D_IA98_DUN | SLIN | 29/04/1998 | 30 | 1.97 | 59 | 482 | 502 | 315 | 575 | 1585 | 1725 | 425 | 2750 | 1.34 | 1.34 | 1.13 | 1.58 | 6.7 | 7 | 4 | 10 |
| SSM | Elliot | 17-3690-51389 | 34D_IA99_ELL | SLIN | 30/04/1999 | 30 | 0.57 | 17 | 390 | 370 | 225 | 603 | 782 | 500 | 150 | 2600 | 1.08 | 1.02 | 0.88 | 1.34 |  |  |  |  |
| SSM | Flack | 17-3634-51607 | 34D_IA03_FLA | SLIN | 16/05/2003 | 30 | 0.80 | 24 | 442 | 429 | 387 | 740 | 1034 | 750 | 600 | 5300 | 1.07 | 1.08 | 0.78 | 1.31 | 9.3 | 8 | 7 | 17 |
| SSM | Garden | 17-2933-51822 | 34D_IA02_GAR | SLIN | 14/05/2002 | 30 | 1.03 | 31 | 421 | 360 | 232 | 643 | 1149 | 500 | 110 | 4000 | 1.11 | 1.06 | 0.79 | 1.52 | 4.2 | 3 | 2 | 8 |
| SSM | Gullbeak | 17-3645-51403 | 34D_IA99_GUL | SLIN | 29/04/1999 | 30 | 0.43 | 13 | 446 | 380 | 340 | 640 | 1313 | 650 | 420 | 3600 | 1.18 | 1.14 | 1.01 | 1.37 |  |  |  |  |
| SSM | Kindiogami | 17-3509-51882 | 34D_IA04_KIN | SLIN | 28/05/2004 | 30 | 2.50 | 75 | 417 | 390 | 255 | 670 | 994 | 700 | 150 | 3800 | 1.12 | 1.10 | 0.78 | 1.58 |  |  |  |  |
| SSM | Lawer | 17-3006-52333 | 34D_IA03_LAW | SLIN | 23/05/2003 | 30 | 4.80 | 144 | 330 | 333 | 170 | 690 | 492 | 400 | 30 | 4600 | 1.08 | 1.09 | 0.44 | 1.41 | 3.7 | 3 | 1 | 18 |
| SSM | Lodestone | 17-3078-52210 | 34D_IA04_LOD | SLIN | 29/05/2004 | 30 | 1.60 | 48 | 354 | 398 | 180 | 615 | 858 | 730 | 40 | 3050 | 1.08 | 1.09 | 0.67 | 1.63 |  |  |  |  |
| SSM | Magog (Granary) | 17-3585-51264 | 34D_IA04_GRA | SLIN | 12/05/2004 | 30 | 0.90 | 27 | 527 | 565 | 175 | 640 | 2395 | 2700 | 50 | 4150 | 1.39 | 1.38 | 0.79 | 1.75 |  |  |  |  |


| District | Lake Name | WBY LID | FN2 Code | Standard | Date | Index CUE |  | \# Fish | Fork Length (mm) |  |  |  | Weight (g) |  |  |  | Condition - Fulton's |  |  |  | Age (Years) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | \# Sets | CUE |  | Mean | Med | Min | Max |
| SSM | Mamainse | 16-6811-52113 | 34D_IA02_MAM | SLIN | 30/05/2002 | 30 | 1.10 | 33 | 444 | 430 | 344 | 620 | 1018 | 840 | 400 | 3400 | 1.07 | 1.06 | 0.91 | 1.43 | 4.5 | 4 | 3 | 7 |
| SSM | Matinenda | 17-3525-51387 | 34D_IA02_MAT | SLIN | 14/06/2002 | 60 | 2.45 | 147 | 360 | 336 | 192 | 603 | 611 | 380 | 60 | 2600 | 1.04 | 1.04 | 0.82 | 1.48 |  |  |  |  |
| SSM | Megisan | 17-3090-52347 | 34D_IA04_MEG | SLIN | 21/05/2004 | 30 | 5.47 | 164 | 372 | 370 | 223 | 718 | 675 | 530 | 100 | 5450 | 1.09 | 1.07 | 0.67 | 1.47 |  |  |  |  |
| SSM | Morrison | 17-2857-52090 | 34D_IA04_MOR | SLIN | 17/05/2004 | 30 | 1.53 | 46 | 399 | 420 | 190 | 565 | 854 | 780 | 60 | 2800 | 1.08 | 1.07 | 0.76 | 1.68 |  |  |  |  |
| SSM | Northland (Loon) | 16-7200-51762 | 34D_IA01_NOR | SLIN | 04/05/2001 | 30 | 1.43 | 43 | 445 | 424 | 177 | 792 | 1581 | 1129 | 55 | 7100 | 1.27 | 1.24 | 0.88 | 1.71 |  |  |  |  |
| SSM | Pecors | 17-3872-51356 | 34D_IA00_PEC | SLIN | 05/05/2000 | 30 | 0.13 | 4 | 450 | 465 | 220 | 650 | 1649 | 1275 | 46 | 4000 | 1.06 | 1.17 | 0.43 | 1.46 |  |  |  |  |
| SSM | Quimby | 17-3659-51361 | 34D_IA99_QUI | SLIN | 03/05/1999 | 30 | 0.47 | 14 | 598 | 598 | 360 | 865 | 2836 | 2600 | 500 | 7984 | 1.20 | 1.21 | 1.01 | 1.40 |  |  |  |  |
| SSM | Ranger | 17-3053-51969 | 34D_IA02_RGR | SLIN | 07/06/2002 | 30 | 2.03 | 61 | 403 | 400 | 290 | 650 | 841 | 720 | 230 | 4200 | 1.12 | 1.10 | 0.90 | 1.53 | 5.9 | 6 | 3 | 11 |
| SSM | Seymour | 17-3298-51798 | 34D_IA02_SEY | SLIN | 30/05/2002 | 30 | 0.97 | 29 | 400 | 400 | 190 | 680 | 914 | 600 | 60 | 2800 | 1.06 | 1.05 | 0.74 | 1.35 | 3.8 | 4 | 1 | 10 |
| SSM | Wakomata (Clear) | 17-3191-51595 | 34D_IA04_WAK | SLIN | 07/05/2004 | 67 | 0.60 | 40 | 549 | 555 | 390 | 720 | 2065 | 2035 | 750 | 4000 | 1.22 | 1.21 | 0.88 | 1.64 |  |  |  |  |
| Sudbury | Alces | 17-4129-51783 | 35D_IA04_ALC | SLIN | 13/05/2004 | 30 | 0.20 | 6 | 579 | 539 | 530 | 698 | 2363 | 2038 | 1750 | 3400 | 1.20 | 1.22 | 1.00 | 1.32 |  |  |  |  |
| Sudbury | Friday | 17-4734-51994 | 35D_IA02_FRI | SLIN | 06/06/2002 | 30 | 1.80 | 54 | 402 | 359 | 181 | 632 | 931 | 445 | 85 | 3050 | 1.06 | 1.03 | 0.89 | 1.43 | 5.9 | 5 | 2 | 14 |
| Sudbury | Hannah | 17-4564-51144 | 35D_IA03_HAN | SLIN | 23/05/2003 | 30 | 0.13 | 4 | 530 | 594 | 212 | 720 | 2448 | 2450 | 92 | 4800 | 1.15 | 1.17 | 0.97 | 1.29 | 7.0 | 8 | 3 | 9 |
| Sudbury | Sam Martin | 17-5156-51907 | 35D_IA03_SAM | SLIN | 30/05/2003 | 30 | 0.67 | 20 | 281 | 263 | 177 | 465 | 299 | 175 | 48 | 1100 | 0.94 | 0.96 | 0.81 | 1.09 | 5.5 | 5 | 3 | 9 |
| Sudbury | Shakwa | 17-4248-51802 | 35D_IA02_SHA | SLIN | 30/05/2002 | 30 | 3.63 | 109 | 387 | 370 | 243 | 918 | 809 | 485 | 140 | 9643 | 1.02 | 1.01 | 0.73 | 1.45 | 5.5 | 5 | 2 | 19 |
| Sudbury | Venetian | 17-4810-51976 | 35D_IA03_VEN | SLIN | 22/05/2003 | 30 | 0.07 | 2 | 516 | 516 | 471 | 561 | 1713 | 1713 | 1275 | 2150 | 1.22 | 1.22 | 1.22 | 1.22 | 8.5 | 8.5 | 6 | 11 |
| Sudbury | Walker | 17-4608-51161 | 35D_IA02_WKR | SLIN | 31/05/2002 | 30 | 1.20 | 36 | 384 | 354 | 256 | 693 | 794 | 433 | 160 | 4700 | 1.05 | 1.05 | 0.71 | 1.41 | 7.7 | 8 | 5 | 17 |
| Timmins | Little Burwash | 17-4930-52197 | 27D_IA04_LBU | SLIN | 20/05/2004 | 30 | 1.63 | 49 | 310 | 265 | 185 | 750 | 496 | 240 | 75 | 5700 | 1.19 | 1.15 | 0.62 | 1.90 |  |  |  |  |
| Timmins | Muskasenda | 17-4773-53267 | 27D_IA01_MUS | SPIN | 06/08/2001 | 30 | 0.73 | 22 | 335 | 302 | 203 | 687 | 704 | 310 | 76 | 4250 | 1.15 | 1.13 | 0.89 | 1.57 | 5.8 | 5 | 2 | 12 |
| Timmins | Oshawong | 17-4728-52266 | 27D_IA03_OSH | SLIN | 22/05/2003 | 30 | 0.03 | 1 | 560 | 560 | 560 | 560 | 2700 | 2700 | 2700 | 2700 | 1.54 | 1.54 | 1.54 | 1.54 | 8.0 | 8 | 8 | 8 |
| Timmins | Prune | 17-4902-52259 | 27D_IA04_PRU | SLIN | 14/05/2004 | 30 | 1.40 | 42 | 378 | 395 | 193 | 565 | 754 | 700 | 80 | 2000 | 1.20 | 1.18 | 0.76 | 2.12 |  |  |  |  |
| Wawa | Anjigami | 16-6809-53004 | 23D_IA02_ANJ | SPIN | 12/08/2002 | 75 | 0.15 | 11 | 312 | 251 | 174 | 622 | 620 | 155 | 47 | 2940 | 1.02 | 0.99 | 0.89 | 1.22 | 6.1 | 5 | 2 | 15 |
| Wawa | Dog | 16-7139-53538 | 23D_IA02_DOG | SPIN | 03/08/2002 | 90 | 0.80 | 72 | 398 | 348 | 175 | 827 | 1100 | 435 | 55 | 6400 | 1.06 | 1.04 | 0.77 | 1.43 | 7.7 | 7 | 2 | 22 |
| Wawa | Manitowik | 16-6953-53376 | 23D_IA01_MAN | SPIN | 11/07/2001 | 90 | 0.93 | 84 | 412 | 370 | 186 | 731 | 1164 | 578 | 60 | 4700 | 1.10 | 1.11 | 0.74 | 1.54 | 5.2 | 4.5 | 2 | 20 |


| FLEN |
| ---: |
| 412 |
| 658 |
| 549 |
| 444 |
| 400 |
| 359 |
| 312 |
| 281 |
| 49 |


| RWT |
| ---: |
| 1106 |
| 4619 |
| 2395 |
| 1100 |
| 858 |
| 620 |
| 459 |
| 299 |
| 49 |


| COND |
| ---: |
| 1.10 |
| 1.39 |
| 1.28 |
| 1.14 |
| 1.07 |
| 1.04 |
| 1.01 |
| 0.87 |
| 49 |

Appendix 6: Summary of index netting results for 62 additional Nordic netting surveys completed in NER (i.e. beyond the representative lake set used in the SoR analysis)

| District | Lake Name | WBY LID | FN2 Code | Date | CUE (all strata) |  | CUE (>6m) |  | \# Fish | Fork Length (mm) |  |  |  | Weight (g) |  |  |  | Condition - Fulton's |  |  |  | Age (years) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | \# Sets | CUE | \# Sets | CUE |  | Mean | Med | Min | Max |
| Cochrane | Hawley | 16-6538-60420 | 26D_IA01_HAW | 08/08/2001 | 69 | 2.57 | 37 | 4.11 | 177 | 485 | 499 | 92 | 660 | 1188 | 1190 | 7 | 2700 | 0.96 | 0.96 | 0.55 | 1.27 | 14.9 | 14 | 3 | 29 |
| Kirkland | Stock | 17-5358-53588 | 25D_IA01_STO | 27/07/2001 | 24 | 0.50 | 14 | 0.86 | 12 | 492 | 519 | 301 | 650 | 1742 | 1525 | 320 | 3500 | 1.23 | 1.23 | 1.01 | 1.38 |  |  |  |  |
| North Bay | Dees | 17-5371-52429 | 36D_IA02_DEE | 09/08/2002 | 54 | 0.00 | 10 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| North Bay | Florence | 17-5335-52315 | 36D_IA00_FLO | 28/08/2000 | 56 | 0.00 | 36 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| North Bay | Grays | 17-5467-52535 | 36D_IA01_GRA | 24/08/2001 | 52 | 0.00 | 16 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| North Bay | Jerry | 17-5263-52458 | 36D_IA02_JER | 22/08/2002 | 62 | 0.00 | 18 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| North Bay | Marina | 17-5258-52493 | 36D_IA01_MAR | 10/08/2001 | 36 | 0.00 | 6 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SSM | Kirk | 17-3414-51701 | 34D_IA01_KIR | 18/08/2001 | 24 | 0.00 | 10 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Barron | 17-5152-52045 | 35D_IA01_BAR | 12/07/2001 | 42 | 0.02 | 5 | 0.20 | 1 | 524 | 524 | 524 | 524 | 2150 | 2150 | 2150 | 2150 | 1.49 | 1.49 | 1.49 | 1.49 | 14.0 | 14 | 14 | 14 |
| Sudbury | Barron | 17-5152-52045 | 35D_IA03_BAR | 16/07/2003 | 20 | 0.00 | 8 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Barron | 17-5152-52045 | 35D_IA04_BAR | 14/07/2004 | 20 | 0.00 | 8 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Bell | 17-4836-51079 | 35D_IA01_BEL | 17/07/2001 | 98 | 0.09 | 28 | 0.32 | 9 | 542 | 535 | 505 | 622 | 1989 | 1850 | 1600 | 3000 | 1.24 | 1.21 | 1.16 | 1.37 | 12.2 | 11.5 | 10 | 17 |
| Sudbury | Bowland | 17-4835-52068 | 35D_IA03_BOW | 22/08/2003 | 40 | 0.63 | 26 | 0.96 | 25 | 334 | 327 | 134 | 499 | 523 | 375 | 18 | 1520 | 1.05 | 1.06 | 0.75 | 1.30 |  |  |  |  |
| Sudbury | Broker | 17-5002-51098 | 35D_IA00_BRO | 14/08/2000 | 32 | 0.00 | 18 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Broker | 17-5002-51098 | 35D_IA02_BR1 | 19/07/2002 | 29 | 0.38 | 17 | 0.53 | 11 | 376 | 442 | 200 | 490 | 767 | 780 | 59 | 1490 | 1.03 | 1.02 | 0.74 | 1.31 |  |  |  |  |
| Sudbury | Broker | 17-5002-51098 | 35D_IA02_BR2 | 17/08/2002 | 30 | 0.30 | 17 | 0.53 | 9 | 331 | 230 | 190 | 508 | 595 | 96 | 56 | 1500 | 0.95 | 0.85 | 0.79 | 1.21 |  |  |  |  |
| Sudbury | Broker | 17-5002-51098 | 35D_IA03_BRO | 20/06/2003 | 38 | 1.16 | 23 | 1.52 | 44 | 427 | 466 | 180 | 565 | 832 | 860 | 46 | 2000 | 0.88 | 0.88 | 0.62 | 1.28 |  |  |  |  |
| Sudbury | Caswell | 17-5229-51902 | 35D_IA02_CAS | 01/08/2002 | 44 | 0.00 | 14 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Chiniguchi | 17-5240-51985 | 35D_IA00_CHI | 17/08/2000 | 56 | 0.05 | 37 | 0.08 | 3 | 364 | 326 | 305 | 460 | 683 | 400 | 350 | 1300 | 1.24 | 1.23 | 1.15 | 1.34 | 2.7 | 2 | 2 | 4 |
| Sudbury | Chuggin | 17-5377-51779 | 35D_IA01_CHU | 26/07/2001 | 36 | 0.33 | 6 | 1.50 | 12 | 475 | 545 | 144 | 668 | 2030 | 2175 | 40 | 4100 | 1.34 | 1.35 | 1.08 | 1.51 | 6.5 | 7 | 1 | 13 |
| Sudbury | Davis | 17-5241-52013 | 35D_IA00_DAV | 12/08/2000 | 16 | 0.00 | 6 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | East Bull | 17-4085-51426 | 35D_IA02_EAS | 09/08/2002 | 30 | 0.00 | 18 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Elboga | 17-4518-52073 | 35D_IA02_ELB | 05/07/2002 | 56 | 0.02 | 6 | 0.17 | 1 | 715 | 715 | 715 | 715 | 5200 | 5200 | 5200 | 5200 | 1.42 | 1.42 | 1.42 | 1.42 |  |  |  |  |
| Sudbury | Elboga | 17-4518-52073 | 35D_IA03_ELB | 30/05/2003 | 16 | 0.56 | 5 | 0.20 | 9 | 668 | 676 | 563 | 755 | 4392 | 4175 | 2825 | 6600 | 1.44 | 1.51 | 1.26 | 1.58 |  |  |  |  |
| Sudbury | Fraleck | 17-5089-51954 | 35D_IA03_FRA | 01/08/2003 | 32 | 0.03 | 16 | 0.06 | 1 | 115 | 115 | 115 | 115 | 14 | 14 | 14 | 14 | 0.90 | 0.90 | 0.90 | 0.90 |  |  |  |  |
| Sudbury | George | 17-4690-50971 | 35D_IA01_GEO | 28/08/2001 | 90 | 0.07 | 26 | 0.19 | 6 | 508 | 523 | 281 | 709 | 1925 | 1700 | 238 | 4400 | 1.17 | 1.16 | 1.05 | 1.31 | 7.3 | 9 | 2 | 11 |
| Sudbury | Great Mountain | 17-4723-51114 | 35D_IA02_GRE | 29/07/2002 | 80 | 0.09 | 26 | 0.27 | 7 | 586 | 568 | 531 | 643 | 2295 | 1910 | 1725 | 2980 | 1.12 | 1.12 | 1.04 | 1.19 |  |  |  |  |
| Sudbury | Helen (Helens) | 17-4563-51062 | 35D_IA03_HEL | 29/08/2003 | 32 | 0.41 | 18 | 0.72 | 13 | 440 | 394 | 251 | 650 | 1210 | 717 | 130 | 3400 | 0.99 | 0.97 | 0.82 | 1.24 | 9.1 | 9 | 3 | 19 |
| Sudbury | Johnnie (Bushcamp) | 17-4826-51036 | 35D_IA00_JOH | 03/08/2000 | 48 | 0.42 | 28 | 0.71 | 20 | 551 | 554 | 505 | 582 | 1841 | 1800 | 1200 | 2450 | 1.10 | 1.11 | 0.83 | 1.33 | 9.1 | 9 | 5 | 13 |
| Sudbury | Johnnie (Bushcamp) | 17-4826-51036 | 35D_IA01_JOH | 01/08/2001 | 98 | 0.17 | 28 | 0.36 | 17 | 574 | 570 | 338 | 720 | 2558 | 2250 | 400 | 5500 | 1.24 | 1.20 | 1.02 | 1.58 | 9.2 | 10 | 3 | 11 |
| Sudbury | Kakakise | 17-4750-51010 | 35D_IA01_KAK | 10/08/2001 | 88 | 0.01 | 26 | 0.04 | 1 | 750 | 750 | 750 | 750 | 5900 | 5900 | 5900 | 5900 | 1.40 | 1.40 | 1.40 | 1.40 |  |  |  |  |
| Sudbury | Kakakise | 17-4750-51010 | 35D_IA03_KAK | 13/08/2003 | 40 | 0.00 | 26 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Kelly \# 27 | 17-5462-51807 | 35D_IA01_KEL | 06/07/2001 | 44 | 0.00 | 8 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Kindle | 17-3921-51464 | 34D_IA00_KIN | 25/08/2000 | 47 | 0.09 | 27 | 0.15 | 4 | 489 | 540 | 277 | 598 | 1743 | 2100 | 172 | 2600 | 1.17 | 1.25 | 0.81 | 1.36 | 5.0 | 5 | 3 | 7 |
| Sudbury | Kukagami | 17-5344-51754 | 35D_IA03_KUK | 29/08/2003 | 64 | 0.52 | 43 | 0.74 | 33 | 434 | 389 | 99 | 774 | 1620 | 735 | 8 | 6350 | 1.25 | 1.26 | 0.77 | 1.48 |  |  |  |  |
| Sudbury | Laundrie | 17-5110-52189 | 35D_IA03_LAU | 08/07/2003 | 33 | 0.12 | 8 | 0.38 | 4 | 457 | 452 | 355 | 570 | 1405 | 1310 | 520 | 2480 | 1.28 | 1.28 | 1.14 | 1.43 | 10.3 | 13 | 4 | 14 |
| Sudbury | Little Panache | 17-4721-51252 | 35D_IA03_LPA | 08/08/2003 | 40 | 0.00 | 25 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| District | Lake Name | WBY LID | FN2 Code | Date | CUE (all strata) |  | CUE (>6m) |  | \# Fish | Fork Length (mm) |  |  |  | Weight (g) |  |  |  | Condition - Fulton's |  |  |  | Age (years) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | \# Sets | CUE | \# Sets | CUE |  | Mean | Med | Min | Max |
| Sudbury | Long | 17-4936-51346 | 35D_IA03_LO4 | 29/08/2003 | 60 | 0.03 | 40 | 0.05 | 2 | 214 | 214 | 200 | 228 | 85 | 85 | 69 | 102 | 0.86 | 0.86 | 0.86 | 0.86 | 2.0 | 2 | 2 | 2 |
| Sudbury | Long | 17-4936-51346 | 35D_IA04_LN4 | 08/08/2004 | 49 | 0.00 | 29 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Lower Matagamasi | 17-5393-51873 | 35D_IA00_LOW | 21/08/2000 | 32 | 0.03 | 16 | 0.06 | 1 | 376 | 376 | 376 | 376 | 650 | 650 | 650 | 650 | 1.22 | 1.22 | 1.22 | 1.22 | 7.0 | 7 | 7 | 7 |
| Sudbury | Manitou | 17-4235-50696 | 35D_IA04_MAN | 03/09/2004 |  |  | 36 | 0.50 | 18 | 421 | 426 | 125 | 610 | 1027 | 875 | 20 | 2320 | 1.09 | 1.09 | 0.90 | 1.28 |  |  |  |  |
| Sudbury | Matagamasi | 17-5305-51809 | 35D_IA00_MAT | 25/07/2000 | 56 | 0.71 | 36 | 1.11 | 40 | 212 | 200 | 123 | 379 | 155 | 85 | 17 | 800 | 1.06 | 1.02 | 0.86 | 1.49 | 1.9 | 2 | 1 | 4 |
| Sudbury | Michaud | 17-4821-51845 | 35D_IA02_MIC | 19/07/2002 | 80 | 0.70 | 26 | 2.00 | 56 | 275 | 255 | 135 | 550 | 298 | 169 | 22 | 1960 | 1.03 | 1.02 | 0.71 | 1.28 |  |  |  |  |
| Sudbury | Nepawhin | 17-5026-51439 | 35D_IA04_NEP | 23/07/2004 | 33 | 0.00 | 16 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Parsons | 17-5308-52065 | 35D_IA01_PAS | 12/07/2001 | 44 | 0.00 | 9 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Pedro | 17-5352-51958 | 35D_IA02_PED | 25/07/2002 | 38 | 0.71 | 8 | 3.25 | 27 | 393 | 472 | 48 | 562 | 1026 | 1225 | 0 | 2240 | 1.15 | 1.16 | 0.36 | 1.36 |  |  |  |  |
| Sudbury | Pedro | 17-5352-51958 | 35D_IA03_PED | 25/07/2003 | 24 | 1.17 | 8 | 2.88 | 28 | 413 | 416 | 155 | 595 | 1017 | 900 | 40 | 2440 | 1.17 | 1.19 | 0.94 | 1.49 |  |  |  |  |
| Sudbury | Peter | 17-4836-51150 | 35D_IA03_PET | 01/08/2003 | 30 | 0.07 | 20 | 0.10 | 2 | 569 | 569 | 530 | 608 | 2500 | 2500 | 2100 | 2900 | 1.35 | 1.35 | 1.29 | 1.41 |  |  |  |  |
| Sudbury | Trout | 17-5317-51186 | 37D_IA03_TRO | 11/08/2003 | 47 | 1.30 | 27 | 2.26 | 61 | 453 | 452 | 233 | 590 | 1054 | 1000 | 130 | 2140 | 1.04 | 1.03 | 0.75 | 1.28 |  |  |  |  |
| Sudbury | Tyson | 17-4910-51070 | 35D_IA01_TYS | 20/07/2001 | 80 | 0.06 | 37 | 0.14 | 5 | 605 | 605 | 532 | 660 | 3494 | 2900 | 2120 | 5250 | 1.52 | 1.47 | 1.31 | 1.83 | 10.0 | 8.5 | 7 | 16 |
| Sudbury | Wavy | 17-4923-51272 | 35D_IA04_WAV | 18/08/2004 | 48 | 0.00 | 28 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Whiskey | 17-3974-51436 | 35D_IA02_WHS | 12/07/2002 | 56 | 1.18 | 35 | 1.83 | 66 | 393 | 414 | 197 | 617 | 762 | 674 | 80 | 2700 | 1.05 | 1.04 | 0.87 | 1.49 | 5.4 | 5 | 2 | 12 |
| Sudbury | White Oak | 17-5000-51272 | 35D_IA03_WHI | 08/07/2003 | 48 | 0.25 | 28 | 0.32 | 12 | 436 | 447 | 185 | 620 | 1117 | 1075 | 60 | 2200 | 1.08 | 1.07 | 0.92 | 1.28 |  |  |  |  |
| Sudbury | White Pine | 17-5128-52363 | 35D_IA01_WHI | 10/07/2001 | 72 | 0.49 | 10 | 2.90 | 35 | 363 | 394 | 92 | 540 | 705 | 700 | 8 | 1540 | 1.13 | 1.14 | 0.76 | 1.62 | 8.4 | 7.5 | 1 | 22 |
| Sudbury | White Pine | 17-5128-52363 | 35D_IA02_WHT | 10/07/2002 | 74 | 0.95 | 20 | 3.25 | 70 | 302 | 267 | 96 | 543 | 489 | 195 | 8 | 2140 | 1.02 | 0.99 | 0.64 | 1.75 | 8.1 | 5 | 1 | 25 |
| Sudbury | White Pine | 17-5128-52363 | 35D_IA04_WHI | 08/07/2004 | 24 | 1.58 | 10 | 3.70 | 38 | 281 | 269 | 98 | 495 | 345 | 206 | 9 | 1620 | 1.07 | 1.07 | 0.90 | 1.34 |  |  |  |  |
| Wawa | Boulder | 16-6743-53628 | 23D_IA03_BOU | 12/07/2003 | 39 | 0.31 | 26 | 0.42 | 12 | 357 | 337 | 227 | 675 | 646 | 375 | 105 | 3800 | 0.96 | 0.95 | 0.85 | 1.24 | 5.8 | 5.5 | 3 | 14 |
| Wawa | Eaglet | 16-6252-53354 | 23D_IA03_EAG | 04/09/2003 | 20 | 0.05 | 12 | 0.08 | 1 | 460 | 460 | 460 | 460 | 1300 | 1300 | 1300 | 1300 | 1.34 | 1.34 | 1.34 | 1.34 |  |  |  |  |
| Wawa | Katzenbach | 16-6239-53245 | 23D_IA03_KAT | 08/07/2003 | 50 | 2.56 | 26 | 3.65 | 127 | 453 | 499 | 86 | 624 | 1142 | 1288 | 4 | 2500 | 0.98 | 0.99 | 0.57 | 1.30 |  |  |  |  |
| Wawa | Michi (Island) | 16-5821-52883 | 23D_IA03_MIC | 10/08/2003 | 40 | 2.33 | 26 | 3.50 | 93 | 515 | 507 | 205 | 699 | 1543 | 1450 | 75 | 3100 | 1.10 | 1.11 | 0.69 | 1.37 |  |  |  |  |
| Wawa | Mishi | 16-6222-53262 | 23D_IA03_MIS | 23/07/2003 | 54 | 1.83 | 26 | 2.23 | 99 | 422 | 465 | 80 | 749 | 952 | 990 | 5 | 5000 | 0.99 | 0.98 | 0.63 | 1.49 | 12.0 | 11 | 0 | 32 |
| Wawa | Mishibishu | 16-6184-53256 | 23D_IA03_MSB | 23/07/2003 | 70 | 2.06 | 36 | 2.67 | 144 | 422 | 437 | 80 | 778 | 842 | 815 |  | 4200 | 0.95 | 0.96 | 0.71 | 1.24 |  |  |  |  |

Appendix 7: Summary of index netting results for 56 additional SLIN / SPIN netting surveys completed in NER (i.e. beyond the representative lake set used in the SoR analysis).

| District | Lake Name | WBY LID | FN2 Code | Standard | Date | Index CUE |  | \# Fish | Fork Length (mm) |  |  |  | Weight (g) |  |  |  | Condition - Fulton's |  |  |  | Age (years) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | \# Sets | CUE |  | Mean | Med | Min | Max |
| Chapleau | Borden | 17-3280-52990 | 21D_IA98_BL1 | SLIN | 14/05/1998 | 27 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chapleau | Emerald | 17-3340-53046 | 21D_IA01_EME | SPIN | 06/09/2001 | 27 | 0.48 | 13 | 517 | 500 | 450 | 677 | 1835 | 1700 | 1200 | 3600 | 1.29 | 1.27 | 1.12 | 1.52 | 5.8 | 6 | 4 | 8 |
| Cochrane | Aquatuk | 16-6588-60271 | 26D_IA91_AL1 | SLIN | 20/06/1991 | 36 | 0.03 | 1 | 714 | 714 | 714 | 714 | 4400 | 4400 | 4400 | 4400 | 1.21 | 1.21 | 1.21 | 1.21 | 23.0 | 23 | 23 | 23 |
| Kirkland | Clarice | 17-6090-53547 | 25D_IA98_CLA | SLIN | 17/05/1998 | 30 | 0.43 | 13 | 457 | 497 | 214 | 701 | 1365 | 1360 | 96 | 4650 | 1.12 | 1.11 | 0.98 | 1.35 |  |  |  |  |
| Kirkland | Elmer | 17-5125-53027 | 25D_IA98_ELM | SLIN | 09/05/1998 | 30 | 0.50 | 15 | 482 | 486 | 378 | 663 | 1467 | 1370 | 510 | 3433 | 1.23 | 1.25 | 0.94 | 1.52 |  |  |  |  |
| Kirkland | Larder | 17-6010-53265 | 25D_IA98_LAR | SLIN | 14/05/1998 | 60 | 3.20 | 192 | 327 | 292 | 123 | 786 | 537 | 229 | 49 | 5650 | 0.99 | 0.96 | 0.69 | 1.61 |  |  |  |  |
| Kirkland | Long (Kushog) | 17-5555-53075 | 25D_IA98_LNG | SLIN | 09/05/1998 | 33 | 0.09 | 3 | 593 | 625 | 530 | 625 | 2523 | 2230 | 1990 | 3350 | 1.21 | 1.34 | 0.91 | 1.37 |  |  |  |  |
| Kirkland | Perry | 17-5661-53749 | 25D_IA01_PER | SLIN | 25/05/2001 | 30 | 1.30 | 39 | 316 | 300 | 181 | 823 | 567 | 325 | 56 | 6818 | 1.15 | 1.14 | 0.76 | 1.45 |  |  |  |  |
| Kirkland | St. Anthony | 17-5962-53128 | 25D_IA98_STA | SLIN | 16/05/1998 | 30 | 0.97 | 29 | 429 | 430 | 262 | 793 | 1239 | 700 | 155 | 8000 | 1.08 | 1.01 | 0.71 | 1.65 |  |  |  |  |
| Kirkland | Stock | 17-5358-53588 | 25D_IA01_STO | SPIN | 25/07/2001 | 45 | 0.24 | 11 | 462 | 525 | 170 | 679 | 1693 | 1898 | 52 | 3600 | 1.18 | 1.18 | 1.00 | 1.31 | 5.0 | 4 | 1 | 11 |
| Kirkland | Trollope | 17-5969-53816 | 25D_IA01_TRO | SPIN | 20/07/2001 | 45 | 1.00 | 45 | 356 | 333 | 226 | 565 | 630 | 400 | 110 | 2400 | 1.08 | 1.05 | 0.81 | 1.41 |  |  |  |  |
| Kirkland | Watabeag | 17-5314-53425 | 25D_IA98_WAT | SLIN | 20/05/1998 | 60 | 0.90 | 54 | 447 | 380 | 253 | 855 | 1449 | 563 | 141 | 7695 | 1.06 | 1.02 | 0.65 | 1.56 |  |  |  |  |
| North Bay | Bear | 17-6069-51648 | 33D_IA01_BEA | SPIN | 19/08/2001 | 30 | 0.37 | 11 | 347 | 253 | 176 | 750 | 971 | 200 | 68 | 5600 | 1.19 | 1.21 | 1.01 | 1.36 |  |  |  |  |
| North Bay | Benner | 17-5288-52236 | 33D_IA01_BEN | SPIN | 02/08/2001 | 30 | 1.70 | 51 | 294 | 267 | 169 | 459 | 367 | 230 | 52 | 1250 | 1.17 | 1.16 | 0.88 | 1.53 |  |  |  |  |
| North Bay | Caribou | 17-5718-50868 | 33D_IA00_CAR | SLIN | 02/05/2000 | 30 | 0.40 | 12 | 541 | 569 | 368 | 690 | 2037 | 2200 | 540 | 3450 | 1.17 | 1.17 | 1.04 | 1.44 |  |  |  |  |
| North Bay | Clear (Transparent) | 17-6580-51459 | 33D_IA01_TRA | SLIN | 10/05/2001 | 30 | 0.30 | 9 | 417 | 410 | 268 | 536 | 808 | 690 | 160 | 1550 | 0.99 | 1.00 | 0.83 | 1.10 |  |  |  |  |
| North Bay | Cross | 17-5788-51912 | 33D_IA98_CRO | SLIN | 11/05/1998 | 30 | 0.40 | 12 | 562 | 554 | 425 | 770 | 2057 | 1870 | 730 | 4864 | 1.07 | 1.05 | 0.92 | 1.31 |  |  |  |  |
| North Bay | Cut | 17-6323-51802 | NPS_IA00_CUT | SLIN | 19/05/2000 | 24 | 0.42 | 10 | 494 | 453 | 357 | 680 | 1859 | 1338 | 500 | 4500 | 1.32 | 1.35 | 1.10 | 1.48 | 6.4 | 4 | 3 | 18 |
| North Bay | Talon | 17-6497-51295 | 33D_IA97_TAL | SLIN | 14/05/1997 | 30 | 0.40 | 12 | 465 | 430 | 373 | 691 | 1417 | 950 | 600 | 4400 | 1.18 | 1.15 | 0.97 | 1.41 |  |  |  |  |
| North Bay | McConnell | 17-6268-51774 | 33D_IA00_MCL | SLIN | 15/05/2000 | 30 | 0.67 | 20 | 334 | 314 | 176 | 550 | 621 | 360 | 50 | 2100 | 1.12 | 1.16 | 0.90 | 1.31 | 3.5 | 3 | 2 | 9 |
| North Bay | Memesagamesing | 17-5779-50969 | 33D_IA97_SAG | SLIN | 23/05/1997 | 30 | 0.93 | 28 | 383 | 346 | 252 | 692 | 789 | 440 | 140 | 4050 | 1.05 | 1.05 | 0.87 | 1.22 |  |  |  |  |
| North Bay | Net | 17-5909-52183 | 36D_IA00_NET | SLIN | 15/05/2000 | 30 | 0.40 | 12 | 487 | 492 | 209 | 815 | 1848 | 1238 | 150 | 7200 | 1.12 | 1.07 | 0.88 | 1.64 |  |  |  |  |
| North Bay | Rabbit | 17-6031-52053 | 33D_IA99_RAB | SLIN | 10/05/1999 | 30 | 0.33 | 10 | 530 | 515 | 435 | 725 | 2100 | 1750 | 1000 | 5500 | 1.29 | 1.27 | 1.12 | 1.59 |  |  |  |  |
| North Bay | Restoule | 17-5950-51006 | 33D_IA99_RES | SLIN | 04/05/1999 | 30 | 0.20 | 6 | 440 | 430 | 299 | 575 | 1214 | 905 | 275 | 2600 | 1.19 | 1.19 | 1.03 | 1.37 |  |  |  |  |
| North Bay | Turtleshell | 17-5573-51927 | 33D_IA01_TR1 | SPIN | 12/07/2001 | 30 | 0.63 | 19 | 305 | 276 | 180 | 685 | 469 | 225 | 75 | 3500 | 1.07 | 1.06 | 0.77 | 1.48 |  |  |  |  |
| SSM | Duborne | 17-3523-51234 | 34D_IA02_DUB | SLIN | 05/06/2002 | 60 | 0.15 | 9 | 653 | 690 | 492 | 787 | 4422 | 4500 | 1600 | 8000 | 1.47 | 1.46 | 1.31 | 1.69 |  |  |  |  |
| SSM | Fern | 17-2815-51794 | 34D_IA02_FER | SLIN | 22/05/2002 | 30 | 1.40 | 42 | 439 | 479 | 175 | 655 | 1085 | 1060 | 40 | 3650 | 1.01 | 1.01 | 0.71 | 1.47 | 4.4 | 5 | 1 | 7 |
| SSM | Rocky Island | 17-3460-51979 | FRU_IA03_RIL | SLIN | 10/05/2003 | 30 | 0.13 | 4 | 635 | 639 | 531 | 732 | 3400 | 3300 | 2000 | 5000 | 1.26 | 1.28 | 1.13 | 1.34 | 11.5 | 12 | 6 | 16 |
| SSM | Scarfe | 17-3429-51270 | 34D_IA02_CAN | SLIN | 16/05/2002 | 45 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Geneva | 17-4583-51789 | 35D_IA02_GEN | SLIN | 27/05/2002 | 30 | 0.07 | 2 | 755 | 755 | 651 | 859 | 4850 | 4850 | 2800 | 6900 | 1.05 | 1.05 | 1.01 | 1.09 | 6.0 | 6 | 5 | 7 |
| Sudbury | George | 17-4690-50971 | SBG_IA94_GEO | SLIN | 07/05/1994 | 123 | 0.27 | 33 | 404 | 373 | 200 | 720 | 1016 | 575 | 80 | 4800 | 1.11 | 1.12 | 0.95 | 1.29 |  |  |  |  |
| Sudbury | Kindle | 17-3921-51464 | 35D_IA99_KIN | SLIN | 29/05/1999 | 27 | 0.22 | 6 | 488 | 478 | 362 | 638 | 1479 | 1120 | 340 | 3100 | 1.03 | 1.03 | 0.72 | 1.39 |  |  |  |  |
| Sudbury | Kukagami | 17-5344-51754 | 35D_IA00_KUK | SLIN | 13/05/2000 | 42 | 0.55 | 23 | 464 | 474 | 270 | 705 | 1407 | 1184 | 198 | 4172 | 1.10 | 1.11 | 1.01 | 1.19 |  |  |  |  |


| District | Lake Name | WBY LID | FN2 Code | Standard | Date | Index CUE |  | \# Fish | Fork Length (mm) |  |  |  | Weight (g) |  |  |  | Condition - Fulton's |  |  |  | Age (years) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | \# Sets | CUE |  | Mean | Med | Min | Max |
| Sudbury | Laundrie | 17-5110-52189 | SBG_IA94_LAU | SLIN | 22/05/1994 | 71 | 0.59 | 42 | 466 | 480 | 319 | 607 | 1252 | 1225 | 375 | 2400 | 1.14 | 1.13 | 0.98 | 1.37 |  |  |  |  |
| Sudbury | Michaud | 17-4821-51845 | SBG_IA94_MIC | SLIN | 17/05/1994 | 69 | 1.46 | 101 | 346 | 325 | 191 | 521 | 516 | 380 | 70 | 1510 | 1.09 | 1.10 | 0.87 | 1.39 |  |  |  |  |
| Sudbury | Peter | 17-4836-51150 | SBG_IA94_PET | SLIN | 12/05/1994 | 76 | 0.04 | 3 | 266 | 240 | 219 | 340 | 220 | 110 | 100 | 450 | 0.96 | 0.95 | 0.80 | 1.14 |  |  |  |  |
| Sudbury | Trout | 17-5317-51186 | 33D_IA03_TRO | SLIN | 16/05/2003 | 36 | 0.56 | 20 | 674 | 685 | 442 | 839 | 4274 | 3725 | 950 | 8400 | 1.28 | 1.29 | 1.00 | 1.56 |  |  |  |  |
| Sudbury | White Pine | 17-5128-52363 | 36D_IA92_WHP | SLIN | 28/05/1992 | 131 | 0.96 | 125 | 441 | 437 | 575 | 177 | 970 | 900 | 50 | 1850 | 1.10 | 1.10 | 0.79 | 1.33 |  |  |  |  |
| Sudbury | White Pine | 17-5128-52363 | 36D_IA93_WHP | SLIN | 15/05/1993 | 204 | 1.35 | 275 | 427 | 430 | 266 | 634 | 848 | 850 | 150 | 2500 | 1.04 | 1.06 | 0.59 | 1.36 | 6.9 | 6 |  | 11 |
| Sudbury | White Pine | 17-5128-52363 | 36D_IA94_WHP | SLIN | 31/05/1994 | 285 | 1.32 | 375 | 392 | 397 | 222 | 632 | 687 | 700 | 100 | 2400 | 1.07 | 1.07 | 0.66 | 1.51 | 5.6 | 5 | 3 | 10 |
| Timmins | Clearwater | 17-5002-53926 | 27D_IA01_CLE | SPIN | 11/08/2001 | 30 | 0.13 | 4 | 583 | 651 | 313 | 716 | 3129 | 3650 | 317 | 4900 | 1.24 | 1.24 | 1.03 | 1.43 |  |  |  |  |
| Timmins | Currie | 17-5172-53366 | 27D_IA01_CUR | SPIN | 09/08/2001 | 30 | 2.80 | 84 | 324 | 313 | 190 | 514 | 411 | 300 | 65 | 1500 | 0.96 | 0.94 | 0.79 | 1.34 | 6.2 | 5.5 | 2 | 12 |
| Timmins | Ferrier | 17-4769-53206 | 27D_IA01_FE2 | SPIN | 01/08/2001 | 30 | 0.23 | 7 | 430 | 420 | 230 | 630 | 989 | 700 | 120 | 2100 | 1.00 | 0.99 | 0.84 | 1.14 |  |  |  |  |
| Timmins | Kasasway | 17-4304-53073 | 27D_IA01_KAS | SPIN | 15/08/2001 | 30 | 0.03 | 1 | 255 | 255 | 255 | 255 | 165 | 165 | 165 | 165 | 1.00 | 1.00 | 1.00 | 1.00 | 2.0 | 2 | 2 | 2 |
| Timmins | Radisson | 17-5180-53389 | 27D_IA01_RAD | SPIN | 09/08/2001 | 30 | 2.87 | 86 | 345 | 315 | 188 | 604 | 573 | 305 | 57 | 2600 | 1.05 | 1.02 | 0.86 | 1.44 | 6.0 | 5 | 2 | 21 |
| Timmins | Semple | 17-4776-53163 | 27D_IA01_SEM | SPIN | 05/08/2001 | 30 | 0.30 | 9 | 442 | 353 | 258 | 659 | 1862 | 600 | 215 | 4400 | 1.34 | 1.28 | 1.17 | 1.58 | 4.7 | 4 | 1 | 10 |
| Timmins | Waonga | 17-4663-52723 | 27D_IA01_WAO | SPIN | 20/09/2001 | 30 | 1.13 | 34 | 357 | 336 | 220 | 514 | 643 | 433 | 115 | 1800 | 1.15 | 1.15 | 0.95 | 1.46 | 3.3 | 3 | 2 | 7 |
| Timmins | Welcome | 17-4971-52299 | 27D_IA03_WEL | SLIN | 15/05/2003 | 30 | 0.17 | 5 | 633 | 613 | 600 | 670 | 2980 | 2600 | 2500 | 3600 | 1.17 | 1.20 | 1.09 | 1.20 | 8.3 | 8 | 5 | 12 |
| Wawa | Charon | 16-5724-54965 | 23D_IA98_CHA | SLIN | 09/05/1998 | 30 | 1.23 | 37 | 414 | 362 | 293 | 735 | 932 | 400 | 200 | 5500 | 0.95 | 0.94 | 0.66 | 1.39 | 10.4 | 10 | 7 | 24 |
| Wawa | Fearless | 16-5940-53862 | 23D_IA00_FRL | SLIN | 22/05/2000 | 30 | 1.17 | 35 | 444 | 527 | 179 | 660 | 1448 | 1657 | 54 | 3384 | 1.08 | 1.13 | 0.94 | 1.18 |  |  |  |  |
| Wawa | Iron | 16-6285-53427 | 23D_IA01_IRO | SPIN | 08/07/2001 | 60 | 0.17 | 10 | 590 | 579 | 531 | 710 | 2900 | 2625 | 2000 | 5400 | 1.38 | 1.35 | 1.27 | 1.51 | 9.8 | 9.5 | 6 | 14 |
| Wawa | Jimmy Kash | 16-6437-53384 | 23D_IA01_JIM | SPIN | 02/07/2001 | 60 | 0.03 | 2 | 637 | 637 | 608 | 665 | 3250 | 3250 | 3000 | 3500 | 1.26 | 1.26 | 1.19 | 1.33 | 16.5 | 16.5 | 12 | 21 |
| Wawa | Klinestiver | 16-5388-54811 | 23D_IA01_KLI | SPIN | 04/07/2001 | 75 | 0.35 | 26 | 489 | 536 | 213 | 779 | 1653 | 1675 | 97 | 5600 | 1.09 | 1.09 | 0.74 | 1.34 | 7.3 | 7.5 | 2 | 16 |
| Wawa | Pagwachuan | 16-5657-55074 | 23D_IA00_PAG | SLIN | 16/05/2000 | 45 | 0.49 | 22 | 520 | 545 | 295 | 640 | 1659 | 1800 | 300 | 2700 | 1.09 | 1.10 | 0.93 | 1.28 |  |  |  |  |
| Wawa | Ravine | 16-5972-54118 | 23D_IA00_RAV | SLIN | 19/05/2000 | 31 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Wawa | Stranded | 16-7021-53225 | 23D_IA00_STR | SLIN | 25/05/2000 | 30 | 0.27 | 8 | 502 | 502 | 465 | 544 | 1437 | 1418 | 1114 | 1833 | 1.12 | 1.12 | 1.11 | 1.14 |  |  |  |  |

## Appendix 8: Estimation of adult lake trout abundance from Spring Littoral Index Netting (SLIN) and Nordic CUE's - expanded from: Monitoring the state of Ontario's inland lakes fisheries resources: a pilot study (OMNR 2004).

Adult lake trout abundance was estimated from SLIN netting results using the relationship between lake trout density, SLIN CUE and lake area developed by Janoscik and Lester (2003):

$$
\begin{equation*}
\hat{D}=\frac{81 * C U E_{m}^{1.07}}{\text { Area }^{0.5}} \tag{A8.1}
\end{equation*}
$$

where $C U E_{m}$ is the mean number of lake trout caught per net that were greater than or equal to the fork length at maturity and Area is the size of the waterbody in hectares (ha).

Similarly, adult lake trout abundance was estimated from Nordic netting results using the following relationship between lake trout density and Nordic CUE (for depth strata below 6meters) developed by Ed Snucins (personal communication):

$$
\log _{10} \text { Density }=\left(\log _{10}\left(\left(C U E_{m}>6 m\right)+1\right)\right) / 0.43
$$

Density $=10^{(l o g}{ }_{10}$ Density) -1
where $C U E_{m}$ is the mean number of lake trout greater than or equal to the fork length at maturity caught per net set below 6 meters.

Length at maturity was estimated using the relationship from Shuter et al. (1998):

$$
\begin{equation*}
L_{m}=1.56 * \omega^{0.257} * L_{\infty}^{0.625} \tag{A8.3}
\end{equation*}
$$

where $L_{m}$ is length at maturation in $\mathrm{cm}, \omega$ is early life growth rate ( $\mathrm{cm} . \mathrm{yr}^{-1}$ ) and $L_{\infty}$ is asymptotic length in cm .
Early growth was estimated from TDS (measured in $\mathrm{mg} . \mathrm{L}^{-1}$ ) using the empirical relationship outlined in Shuter et al. (1998):

$$
\begin{equation*}
\omega=5.60 * T D S^{0.162} \tag{A8.4}
\end{equation*}
$$

Asymptotic length ( $L_{\infty}$ ) was estimated using one of three methods, depending on the sample size of lake trout caught.

For samples of greater than 50 lake trout, asymptotic length was estimated using the approach suggested by Janoscik and Lester (2003):

$$
\begin{equation*}
L_{\infty}=\frac{L_{95}}{0.95} \tag{A8.5}
\end{equation*}
$$

where $L_{95}$ is the mean length of the 5 largest fish within the $95^{\text {th }}$ percentile of observed lengths (i.e. the largest $5 \%$ of the sample is ignored). This approach excludes the largest fish caught, which may represent a sub-population of fish which sustain higher growth than the general population by feeding on lake trout (Janoscik and Lester 2003).

For sample sizes between 10 and 50 lake trout, this estimate was modified based on the relationship between sample size and the ratio of estimated to true asymptotic length (Janoscik and Lester 2003):

$$
\begin{equation*}
L_{\infty}=\frac{L_{95}}{0.95 *\left(1-e^{-0.039 *(n+32)}\right)} \tag{A8.6}
\end{equation*}
$$

where $n$ is the number of mature lake trout captured. For samples of less than 10 lake trout, asymptotic length was predicted based on the relationship with lake area reported by Shuter et al. (1998):

$$
\begin{equation*}
L_{\infty}=37.15 * \text { Area }^{0.071} \tag{A8.7}
\end{equation*}
$$

Appendix 9: Application of the Shuter et al. (1998) exploitation model to NER lake trout lakes.

Application of the Shuter et al. (1998) exploitation model to NER lakes warrants further investigation. One weakness of the Shuter et al. model is that it is driven mainly by lake area and ignores details regarding lake depth and the fish community (Nigel Lester, personal communication). The model was calibrated using a set of lakes > 100ha in size, the majority of which can be characterized as providing good lake trout habitat (ie. good depth for size, good thermal habitat volume / surface area ratio). The lake set used does not fully capture potential variation in habitat and fish community factors. Formulas developed by Shuter et al. (1998) may provide overly optimistic yield estimates and reference points where such factors are significant (ie. unrealistic benchmarks where habitat or fish community limitations are at play). For example, in the case of low summer habitat availability, a scenario that could simply relate to intrinsic lake characteristics (e.g. marginal lake depth) or could result from either nutrient loading or climate change, one would expect reduced lake trout carrying capacity and hence reduced sustainable yield. Similarly, added community complication resulting from invasive or introduced species can be expected to result in greater demand for available resources and reduced lake trout production. Lester and Dunlop 2004 suggest that while benchmarks based on the Shuter et al. model can safely be used as a means to indicate how much resource loss has occurred due to a combination of lake trout exploitation and changes in habitat and fish community structure, alternate reference points may ultimately be required to make more defensible assumptions re: the specific impact of exploitation. We fully support additional research in this regard.

Furthermore, in proceeding through the benchmarking process, the relative sensitivity of both the abundance benchmark and the calculation of abundance from netting data to estimates of asymptotic length ( $\mathrm{L}_{\infty}$ ) became apparent. Based on the Shuter et al. model, $\mathrm{L}_{\infty}$ for lake trout ranges from $40-90 \mathrm{~cm}$ and is positively related to lake area, whereas expected abundance at MSY is inversely related to $\mathrm{L}_{\infty}$. Lake trout populations characterized by a large ultimate size (i.e. large bodied or piscivorous lake trout) demonstrate greater length at maturity and lower expected abundance. Smaller bodied lake trout populations (planktivorous populations) on the other hand, demonstrate lower length at maturity and higher expected abundance. Estimation of $\mathrm{L}_{\infty}$ from surface area as per the Shuter equation assumes that larger lakes support more diverse fish communities, hence greater prey availability, and higher $\mathrm{L}_{\infty}$. Such assumptions can prove problematic where small lakes support populations of pelagic forage fish or where large lakes support simple fish communities. Janoscik and Lester (2003) recommend an alternate approach to estimation of $\mathrm{L}_{\infty}$ using actual length distribution data where available, in order to minimize intrinsic assumptions of the Shuter et al. model.

The benchmarking procedure applied via the NE lake trout project essentially followed that proposed by Janoscik and Lester (2003). $\mathrm{L}_{\infty}$ was estimated from lake trout length distributions associated with the SLIN and Nordic surveys where sample size permitted. Janoscik and Lester (2003) explored the sensitivity of $\mathrm{L}_{\infty}$ estimates to sample size. Estimates of $\mathrm{L}_{\infty}$ can be expected to be within $95 \%$ of true asymptotic length where lake trout sample sizes exceed 50. For sample sizes below 50 a correction factor is
recommended. The Shuter equation based on lake area was applied where sample sizes were below 10. The range of $\mathrm{L}_{\infty}$ estimated using this approach matched the expected range of $L_{\infty}$ reported by Shuter et al. (1998); estimated $\mathrm{L}_{\infty}$ only fell outside the range of $40-90 \mathrm{~cm}$ for 3 of the 130 lakes sampled.

Given the differences in estimation of $\mathrm{L}_{\infty}$ from either lake area or length distribution data and the relative importance of the criterion, the benchmarking process (i.e. classification of lakes into quadrants) was completed using both potential methods and compared. While only $14.6 \%$ of lakes were found to meet the abundance benchmark using the Shuter et al. (1998) equation to estimate $L_{\infty}$ from lake surface area, $32.3 \%$ of lakes meet the abundance benchmark using length distribution data to estimate $\mathrm{L}_{\infty}$. The specific quadrants shifts between the two methods were investigated: all 23 of the observed quadrant shifts resulting from use of actual length distribution data were positive, from either Quadrant 3 to Quadrant 2 or Quadrant 4 to Quadrant 1. A few lake specific examples are presented below which demonstrate the violation of assumptions by both methods.

- Pilgrim Lake - A relatively small lake (130 hectares) with a very high index CUE that fails the abundance test with $\mathrm{L}_{\infty}$ estimated from lake area. Clearly, Pilgrim Lake supports a high density population of very small bodied lake trout. $\mathrm{L}_{\infty}$ estimated from length distribution data is below that predicted from lake area and, as a result, the lake passes the abundance test.
- Seymour \& Munroe Lakes - Two small lakes (60 and 76 hectares respectively) with good index CUE's and observed $L_{\infty}$ 's beyond that predicted by lake area. The fact that these lakes pass the abundance test with $\mathrm{L}_{\infty}$ estimated from length distribution data would seem appropriate.
- Friday \& Midlothian Lakes - Two medium size lakes (305 and 382 ha respectively) with reasonable index CUE's and good lake trout size ranges. Again, observed growth exceeds that predicted by lake area and it would appear to make sense that these lakes pass the abundance test.
- Quimby, Nemegosenda, and Three Lakes - Three lakes with low index CUE's and potential recruitment problems (i.e. a few large lake trout present). Values for $\mathrm{L}_{\infty}$ estimated from length distributions were high ( $86.5,102.5$, and 73.8 cm respectively) resulting in low abundance benchmarks and spurious passing grades.

Based on the above examples (and others not shown), a true picture of resource status likely lies somewhere between the classifications using lake area to estimate $\mathrm{L}_{\infty}$ and the classifications using length distribution data to estimate $\mathrm{L}_{\infty}$. Given that both approaches would seem to have pros and cons, the use of empirical data (based on actual length distributions) was selected as the most unbiased view of the resource.

Appendix 10: Summary of key parameters generated in completion of the NER quadrant analysis.

| District | Lake Name | WBY LID | FN2 Code | Standard | Random | Area (ha) | TDS | Omega (cm) | $\mathrm{L}_{\text {-inf }}(\mathrm{cm})$ | $\mathrm{L}_{\text {mat }}(\mathrm{cm})$ | $\mathrm{D}_{\text {obs }}$ (\# / ha) | $\mathrm{D}_{\text {msy }}$ (\# / ha) | $\mathrm{E}_{\text {obs }}$ (hrs / ha) | $\mathrm{E}_{\text {msy }}$ (hrs / ha) | Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chapleau | Blackfish | 16-7142-53440 | 21D_IA03_BLA | Nordic | Yes | 212.7 | 24.0 | 9.37 | 62.44 | 43.33 | 0.39 | 1.58 | 2.62 | 5.45 | 4 |
| Chapleau | Nemegosenda | 17-3426-53189 | 21D_IA01_NEM | SLIN | Yes | 1830.8 | 84.6 | 11.49 | 102.52 | 63.51 | 0.26 | 0.02 | 2.17 | 4.03 | 1 |
| Chapleau | Windermere | 17-2934-53143 | 21D_IA03_WIN | Nordic | Yes | 3821.9 | 39.2 | 10.14 | 66.73 | 46.23 | 0.00 | 1.01 | 4.17 | 3.75 | 3 |
| Kirkland | Greenwater | 17-5561-52598 | 25D_IA02_GRE | Nordic | Yes | 56.7 | 17.9 | 8.94 | 51.45 | 37.64 | 14.90 | 5.01 | 3.63 | 7.57 | 1 |
| Kirkland | Lady Sydney | 17-5599-52502 | 25D_IA01_LAD | Nordic | No | 232.3 | 18.4 | 8.98 | 89.47 | 54.45 | 0.62 | 0.09 | 1.11 | 5.42 | 1 |
| Kirkland | Mendelssohn | 17-5595-52642 | 25D_IA01_MEN | SPIN | No | 459.1 | 31.2 | 9.78 | 53.05 | 39.31 | 0.92 | 4.24 | 1.79 | 4.72 | 4 |
| Kirkland | Midlothian | 17-5001-53061 | 25D_IA00_MID | SLIN | Yes | 382.1 | 60.0 | 10.87 | 67.09 | 47.23 | 1.15 | 0.97 | 0.70 | 4.75 | 1 |
| Kirkland | Munroe | 17-5606-52675 | 25D_IA02_MUN | Nordic | Yes | 76.1 | 23.0 | 9.31 | 66.77 | 45.23 | 1.91 | 1.00 | 3.23 | 6.86 | 1 |
| Kirkland | Smith | 17-5182-52469 | 25D_IA02_SMI | Nordic | Yes | 218.7 | 13.7 | 8.55 | 47.09 | 35.09 | 3.74 | 7.92 | 5.56 | 5.58 | 4 |
| North Bay | Anima Nipissing | 17-5827-52344 | 36D_IA00_ANI | SLIN | Yes | 1929.2 | 26.2 | 9.51 | 58.82 | 41.80 | 1.20 | 2.31 | 3.39 | 3.93 | 4 |
| North Bay | Barter | 17-5674-52374 | 36D_IA02_BAR | Nordic | Yes | 116.7 | 19.2 | 9.04 | 51.87 | 37.95 | 6.55 | 4.79 | 10.00 | 6.28 | 2 |
| North Bay | Benner | 17-5288-52236 | 35D_IA01_BEN | Nordic | Yes | 58.1 | 15.9 | 8.76 | 40.23 | 31.80 | 4.01 | 16.27 | 17.02 | 7.61 | 3 |
| North Bay | Bluesucker | 17-5298-52239 | 36D_IA00_BLU | Nordic | No | 147.7 | 20.0 | 9.10 | 48.39 | 36.30 | 4.01 | 6.91 | 4.18 | 5.93 | 4 |
| North Bay | Clearwater | 17-5533-52097 | 36D_IA99_CLE | SLIN | Yes | 116.9 | 23.4 | 9.34 | 40.76 | 32.60 | 12.43 | 15.40 | 6.62 | 6.18 | 3 |
| North Bay | Cross | 17-5788-51912 | 36D_IA04_CRO | SLIN | Yes | 1629.3 | 39.0 | 10.14 | 62.81 | 44.39 | 0.33 | 1.52 | 5.53 | 4.02 | 3 |
| North Bay | Cucumber | 17-5521-51877 | NPS_IA99_CUC | SLIN | Yes | 67.7 | 31.3 | 9.78 | 57.20 | 41.34 | 3.71 | 2.74 | 8.15 | 6.87 | 2 |
| North Bay | Cummings | 17-5605-51996 | 33D_IA01_CUM | SPIN | Yes | 68.2 | 20.8 | 9.16 | 57.51 | 40.79 | 3.36 | 2.65 | 7.91 | 7.11 | 2 |
| North Bay | Dana (Pine) | 17-5566-51724 | 33D_IA03_DAN | SLIN | Yes | 113.8 | 18.2 | 8.96 | 48.71 | 36.32 | 0.88 | 6.68 | 8.92 | 6.34 | 3 |
| North Bay | Deschamps | 17-5603-51797 | 33D_IA03_DES | Nordic | Yes | 99.1 | 20.6 | 9.14 | 51.48 | 37.87 | 0.43 | 4.99 | 4.36 | 6.49 | 4 |
| North Bay | Diamond | 17-5580-52276 | 33D_IA03_DIA | SLIN | Yes | 954.0 | 18.0 | 8.95 | 60.47 | 41.92 | 0.40 | 1.94 | 5.46 | 4.28 | 3 |
| North Bay | Emerald | 17-5515-51958 | 33D_IA99_EME | SLIN | No | 583.4 | 55.0 | 10.72 | 46.29 | 36.77 | 3.37 | 8.61 | 13.65 | 4.50 | 3 |
| North Bay | Iron | 17-5491-52005 | 33D_IA04_IRO | Nordic | Yes | 80.2 | 17.6 | 8.91 | 42.93 | 33.34 | 1.57 | 12.26 | 0.10 | 6.92 | 4 |
| North Bay | Jim Edwards | 17-5431-52386 | 36D_IA02_JIM | Nordic | No | 88.6 | 16.1 | 8.78 | 51.08 | 37.29 | 0.28 | 5.21 | 1.35 | 6.80 | 4 |
| North Bay | Linger | 17-5367-52152 | 35D_IA02_LIN | Nordic | No | 72.1 | 20.2 | 9.12 | 51.12 | 37.67 | 2.28 | 5.19 | 1.15 | 7.03 | 4 |
| North Bay | Lower Bass | 17-5601-52035 | 36D_IA99_LOW | SLIN | No | 106.1 | 28.0 | 9.61 | 40.59 | 32.75 | 7.33 | 15.67 | 4.51 | 6.24 | 4 |
| North Bay | Manitou (Devil's) | 17-5548-51889 | 33D_IA99_MAN | SLIN | No | 343.5 | 50.0 | 10.55 | 65.81 | 46.27 | 0.96 | 1.11 | 6.24 | 4.85 | 3 |
| North Bay | Marten | 17-5953-51723 | 33D_IA98_MAR | SLIN | No | 1158.1 | 46.3 | 10.42 | 66.75 | 46.56 | 0.28 | 1.00 | 11.77 | 4.17 | 3 |
| North Bay | McGiffin | 17-5401-52454 | 36D_IA02_MCG | Nordic | Yes | 118.1 | 23.4 | 9.34 | 58.36 | 41.39 | 1.15 | 2.43 | 1.61 | 6.17 | 4 |
| North Bay | Obabika | 17-5566-52101 | 33D_IA98_OBA | SLIN | No | 3225.7 | 31.5 | 9.79 | 65.93 | 45.44 | 0.00 | 1.10 | 0.10 | 3.77 | 4 |
| North Bay | Pilgrim | 17-5259-52267 | 35D_IA04_PIL | Nordic | Yes | 130.0 | 15.0 | 8.68 | 42.00 | 32.65 | 16.95 | 13.52 | 11.93 | 6.23 | 2 |
| North Bay | Rodd | 17-5274-52242 | 36D_IA01_ROD | Nordic | No | 31.8 | 17.6 | 8.92 | 47.50 | 35.67 | 4.01 | 7.59 | 9.20 | 8.97 | 3 |
| North Bay | Sugar | 17-5670-52431 | 36D_IA01_SUG | Nordic | No | 230.1 | 31.8 | 9.81 | 62.56 | 43.90 | 0.39 | 1.56 | 3.06 | 5.29 | 4 |
| North Bay | Turner | 17-5695-52367 | 36D_IA01_TUR | Nordic | No | 136.1 | 28.0 | 9.61 | 85.35 | 53.69 | 0.51 | 0.14 | 1.61 | 5.91 | 1 |
| North Bay | Turtleshell | 17-5573-51927 | 33D_IA01_TR2 | SLIN | Yes | 159.3 | 21.4 | 9.20 | 45.98 | 35.19 | 2.42 | 8.90 | 3.94 | 5.81 | 4 |


| District | Lake Name | WBY LID | FN2 Code | Standard | Random | Area (ha) | TDS | Omega (cm) | $\mathrm{L}_{\text {-inf }}(\mathrm{cm})$ | $\mathrm{L}_{\text {mat }}(\mathrm{cm})$ | $\mathrm{D}_{\text {obs }}$ (\# / ha) | $\mathrm{D}_{\text {msy }}$ (\# / ha) | $\mathrm{E}_{\text {obs }}$ (hrs / ha) | $\mathrm{E}_{\text {msy }}$ (hrs / ha) | Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| North Bay | Wawiagama (Round) | 17-5476-52058 | 33D_IA01_WAW | SLIN | Yes | 643.8 | 35.3 | 9.98 | 76.01 | 50.19 | 0.57 | 0.38 | 4.71 | 4.48 | 2 |
| North Bay | Whitewater | 17-5756-52313 | 33D_IA01_WHI | SPIN | Yes | 244.3 | 40.8 | 10.21 | 45.31 | 35.79 | 3.91 | 9.55 | 5.79 | 5.17 | 3 |
| SSM | Admiral (Duck) | 17-3486-51441 | 34D_IA03_DUC | Nordic | Yes | 86.3 | 15.3 | 8.71 | 50.98 | 37.17 | 0.00 | 5.26 | 0.45 | 6.87 | 4 |
| SSM | Basswood | 17-3164-51328 | 34D_IA01_BAS | SLIN | No | 2699.9 | 31.0 | 9.77 | 56.41 | 40.94 | 1.05 | 2.98 | 3.37 | 3.82 | 4 |
| SSM | Bobowash | 17-3635-51568 | 34D_IA03_BOB | Nordic | No | 66.7 | 13.3 | 8.52 | 65.67 | 43.73 | 2.92 | 1.13 | 13.29 | 7.44 | 2 |
| SSM | Burns | 17-3382-51620 | 34D_IA01_BUR | Nordic | Yes | 168.4 | 12.7 | 8.45 | 53.38 | 38.02 | 1.13 | 4.09 | 1.93 | 5.93 | 4 |
| SSM | Canyon | 17-3792-51405 | 34D_IA03_CAN | Nordic | Yes | 50.5 | 23.8 | 9.36 | 49.08 | 36.91 | 1.19 | 6.43 | 0.10 | 7.61 | 4 |
| SSM | Chiblow | 17-3423-51340 | 34D_IA02_CHI | SLIN | Yes | 2003.5 | 18.6 | 9.00 | 56.67 | 40.21 | 0.65 | 2.90 | 8.67 | 3.89 | 3 |
| SSM | Christman (Jim Christ) | 17-3675-51601 | 34D_IA03_JIM | Nordic | No | 56.1 | 32.4 | 9.84 | 52.15 | 38.93 | 0.84 | 4.66 | 0.10 | 7.18 | 4 |
| SSM | Constance | 17-3290-51439 | 34D_IA03_CON | SLIN | Yes | 119.5 | 29.2 | 9.68 | 91.79 | 56.45 | 5.86 | 0.07 | 8.81 | 6.06 | 2 |
| SSM | Cumming | 17-3191-51490 | 34D_IA03_CUM | SLIN | No | 522.7 | 23.0 | 9.31 | 65.89 | 44.84 | 1.38 | 1.10 | 7.70 | 4.66 | 2 |
| SSM | Darragh | 17-3039-51641 | 34D_IA03_DAR | Nordic | Yes | 190.5 | 19.0 | 9.02 | 52.42 | 38.20 | 3.79 | 4.53 | 7.02 | 5.64 | 3 |
| SSM | Daystar | 17-3465-51920 | 34D_IA03_DAY | Nordic | Yes | 74.8 | 21.3 | 9.19 | 52.36 | 38.36 | 1.44 | 4.56 | 3.78 | 6.93 | 4 |
| SSM | Deil (Devil's) | 17-2752-51845 | 34D_IA00_DEV | SLIN | Yes | 197.0 | 17.4 | 8.89 | 81.54 | 51.06 | 3.55 | 0.21 | 11.05 | 5.63 | 2 |
| SSM | Denman (Little Chiblow) | 17-3360-51357 | 34D_IA02_LIT | SLIN | No | 644.4 | 26.0 | 9.49 | 58.29 | 41.54 | 1.63 | 2.44 | 4.97 | 4.50 | 3 |
| SSM | Dollyberry | 17-3633-51558 | 34D_IA03_DOL | Nordic | No | 159.2 | 9.0 | 7.99 | 62.83 | 41.78 | 0.62 | 1.52 | 0.10 | 6.13 | 4 |
| SSM | Dubbelewe | 17-3746-51867 | 34D_IA03_DUB | Nordic | Yes | 94.4 | 12.9 | 8.47 | 51.31 | 37.06 | 1.70 | 5.09 | 9.77 | 6.81 | 3 |
| SSM | Dunlop | 17-3673-51503 | 34D_IA98_DUN | SLIN | No | 1030.9 | 21.0 | 9.17 | 59.31 | 41.65 | 4.00 | 2.20 | 16.98 | 4.23 | 2 |
| SSM | East Caribou | 17-3320-51621 | 34D_IA03_ECA | Nordic | Yes | 187.0 | 16.0 | 8.77 | 65.73 | 44.09 | 0.55 | 1.12 | 2.98 | 5.72 | 4 |
| SSM | Elliot | 17-3690-51389 | 34D_IA99_ELL | SLIN | No | 631.4 | 73.0 | 11.22 | 63.94 | 46.11 | 0.37 | 1.35 | 17.90 | 4.44 | 3 |
| SSM | Flack | 17-3634-51607 | 34D_IA03_FLA | SLIN | Yes | 945.1 | 22.6 | 9.28 | 57.58 | 40.96 | 1.26 | 2.63 | 3.95 | 4.28 | 4 |
| SSM | Garden | 17-2933-51822 | 34D_IA02_GAR | SLIN | Yes | 140.3 | 21.1 | 9.18 | 70.78 | 46.85 | 2.57 | 0.66 | 6.59 | 5.98 | 2 |
| SSM | Gullbeak | 17-3645-51403 | 34D_IA99_GUL | SLIN | No | 242.0 | 28.7 | 9.65 | 73.54 | 48.68 | 0.80 | 0.49 | 4.39 | 5.27 | 1 |
| SSM | Keelor | 17-3500-51516 | 34D_IA03_KEE | Nordic | Yes | 134.7 | 14.6 | 8.64 | 49.58 | 36.41 | 4.96 | 6.10 | 7.12 | 6.19 | 3 |
| SSM | Kindiogami | 17-3509-51882 | 34D_IA04_KIN | SLIN | Yes | 482.2 | 25.0 | 9.44 | 61.26 | 42.87 | 3.31 | 1.79 | 5.48 | 4.71 | 2 |
| SSM | Lawer (Gull) | 17-3006-52333 | 34D_IA03_LAW | SLIN | Yes | 137.6 | 19.4 | 9.06 | 47.37 | 35.75 | 11.97 | 7.69 | 8.54 | 6.04 | 2 |
| SSM | Little Sister | 17-3813-51665 | 34D_IA04_LIT | Nordic | Yes | 62.0 | 18.4 | 8.97 | 49.12 | 36.54 | 7.42 | 6.40 | 11.43 | 7.37 | 2 |
| SSM | Lodestone | 17-3078-52210 | 34D_IA04_LOD | SLIN | Yes | 62.8 | 18.2 | 8.96 | 58.90 | 41.21 | 8.08 | 2.29 | 0.10 | 7.36 | 1 |
| SSM | Magog (Granary) | 17-3585-51264 | 34D_IA04_GRA | SLIN | Yes | 319.3 | 38.8 | 10.13 | 73.11 | 49.10 | 3.26 | 0.52 | 11.62 | 4.96 | 2 |
| SSM | Mamainse | 16-6811-52113 | 34D_IA02_MAM | SLIN | Yes | 148.6 | 13.1 | 8.50 | 60.75 | 41.50 | 4.79 | 1.89 | 4.72 | 6.09 | 1 |
| SSM | Matinenda | 17-3525-51387 | 34D_IA02_MAT | SLIN | No | 4143.4 | 34.1 | 9.92 | 57.60 | 41.68 | 0.64 | 2.63 | 8.08 | 3.71 | 3 |
| SSM | May | 17-3852-51434 | 34D_IA02_MAY | Nordic | No | 329.9 | 266.4 | 13.84 | 70.14 | 51.76 | 0.86 | 0.70 | 1.31 | 4.58 | 1 |
| SSM | McCabe | 17-3797-51421 | 34D_IA02_MCC | Nordic | Yes | 174.9 | 249.1 | 13.69 | 66.97 | 50.05 | 0.51 | 0.98 | 1.04 | 4.94 | 4 |
| SSM | McGiverin | 17-3678-51289 | 34D_IA02_MCG | Nordic | Yes | 276.0 | 30.8 | 9.76 | 50.34 | 37.94 | 1.07 | 5.63 | 2.10 | 5.13 | 4 |
| SSM | Megisan | 17-3090-52347 | 34D_IA04_MEG | SLIN | Yes | 616.1 | 26.5 | 9.52 | 49.79 | 37.43 | 8.98 | 5.97 | 1.38 | 4.53 | 1 |
| SSM | Morrison | 17-2857-52090 | 34D_IA04_MOR | SLIN | Yes | 376.6 | 15.3 | 8.71 | 59.14 | 41.02 | 3.45 | 2.24 | 2.03 | 4.99 | 1 |


| District | Lake Name | WBY LID | FN2 Code | Standard | Random | Area (ha) | TDS | Omega (cm) | $\mathrm{L}_{\text {-inf }}(\mathrm{cm})$ | $\mathrm{L}_{\text {mat }}(\mathrm{cm})$ | $\mathrm{D}_{\text {obs }}$ (\#/ha) | $\mathrm{D}_{\text {msy }}$ (\# / ha) | $\mathrm{E}_{\text {obs }}$ (hrs / ha) | $\mathrm{E}_{\text {msy }}$ (hrs/ha) | Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSM | Northland (Loon) | 16-7200-51762 | 34D_IA01_NOR | SLIN | Yes | 86.9 | 13.1 | 8.49 | 71.26 | 46.13 | 4.75 | 0.63 | 8.43 | 6.95 | 2 |
| SSM | Pecors | 17-3872-51356 | 34D_IA00_PEC | SLIN | No | 353.0 | 191.8 | 13.12 | 56.34 | 44.13 | 0.25 | 3.00 | 1.57 | 4.61 | 4 |
| SSM | Quimby | 17-3659-51361 | 34D_IA99_QUI | SLIN | No | 178.5 | 56.6 | 10.77 | 86.54 | 55.80 | 2.08 | 0.13 | 2.42 | 5.37 | 1 |
| SSM | Ranger | 17-3053-51969 | 34D_IA02_RGR | SLIN | Yes | 2322.0 | 21.6 | 9.22 | 52.44 | 38.42 | 2.23 | 4.52 | 8.15 | 3.84 | 3 |
| SSM | Rochester | 17-3843-51532 | 34D_IA04_ROC | Nordic | Yes | 54.2 | 14.7 | 8.65 | 49.33 | 36.30 | 1.57 | 6.26 | 6.28 | 7.81 | 4 |
| SSM | Rosemarie | 17-3822-51676 | 34D_IA03_ROS | Nordic | Yes | 86.1 | 19.0 | 9.02 | 49.94 | 36.99 | 1.79 | 5.87 | 9.79 | 6.76 | 3 |
| SSM | Samreid | 17-3658-51570 | 34D_IA03_SAM | Nordic | No | 88.1 | 17.3 | 8.89 | 60.63 | 41.93 | 1.19 | 1.91 | 8.68 | 6.77 | 3 |
| SSM | Semiwite | 17-3712-51594 | 34D_IA03_SEM | Nordic | No | 309.6 | 27.5 | 9.58 | 45.03 | 35.07 | 3.78 | 9.83 | 8.86 | 5.05 | 3 |
| SSM | Seymour | 17-3298-51798 | 34D_IA02_SEY | SLIN | Yes | 60.0 | 20.3 | 9.12 | 67.05 | 45.13 | 3.49 | 0.97 | 13.66 | 7.37 | 2 |
| SSM | Skookum | 17-3008-51554 | 34D_IA03_SKO | Nordic | Yes | 66.9 | 19.9 | 9.09 | 50.07 | 37.13 | 0.00 | 5.79 | 10.26 | 7.18 | 3 |
| SSM | Ten Mile | 17-3629-51531 | 34D_IA03_TEN | Nordic | Yes | 1034.7 | 17.9 | 8.94 | 49.79 | 36.83 | 5.84 | 5.97 | 4.14 | 4.23 | 4 |
| SSM | Tenfish | 17-3635-51676 | 34D_IA04_TEN | Nordic | Yes | 94.0 | 14.9 | 8.68 | 43.60 | 33.46 | 14.65 | 11.43 | 7.10 | 6.74 | 2 |
| SSM | Three Lakes | 17-3398-51886 | 34D_IA03_THR | Nordic | Yes | 50.4 | 59.4 | 10.85 | 73.80 | 50.29 | 0.73 | 0.48 | 12.60 | 6.96 | 2 |
| SSM | Toodee | 17-3342-51796 | 34D_IA03_TOO | Nordic | Yes | 138.8 | 38.3 | 10.11 | 53.85 | 40.05 | 2.28 | 3.89 | 9.04 | 5.76 | 3 |
| SSM | Wakomata (Clear) | 17-3191-51595 | 34D_IA04_WAK | SLIN | No | 2489.8 | 21.0 | 9.17 | 70.13 | 46.55 | 0.78 | 0.71 | 4.70 | 3.81 | 2 |
| SSM | White Bear | 17-3393-51732 | 34D_IA03_WHI | Nordic | Yes | 286.0 | 20.2 | 9.11 | 51.16 | 37.68 | 2.85 | 5.17 | 4.52 | 5.19 | 4 |
| Sudbury | Acheson | 17-4304-51587 | 33D_IA04_ACH | Nordic | Yes | 187.4 | 17.8 | 8.93 | 53.60 | 38.67 | 4.96 | 4.00 | 5.54 | 5.68 | 1 |
| Sudbury | Alces | 17-4129-51783 | 35D_IA04_ALC | SLIN | Yes | 62.3 | 17.4 | 8.90 | 49.82 | 36.80 | 1.84 | 5.95 | 2.04 | 7.40 | 4 |
| Sudbury | Antrim | 17-4523-51979 | 35D_IA04_ANT | Nordic | Yes | 95.9 | 27.0 | 9.55 | 51.36 | 38.25 | 0.00 | 5.06 | 1.16 | 6.40 | 4 |
| Sudbury | Bear | 17-4652-51149 | 35D_IA03_BEA | Nordic | Yes | 691.9 | 56.6 | 10.77 | 55.85 | 41.70 | 0.68 | 3.16 | 9.60 | 4.41 | 3 |
| Sudbury | Big Squaw (Big Squirrel) | 17-4281-52070 | 35D_IA03_BIG | Nordic | Yes | 92.3 | 17.4 | 8.89 | 75.06 | 48.33 | 0.95 | 0.42 | 0.10 | 6.69 | 1 |
| Sudbury | Fairbank | 17-4672-51457 | 35D_IA03_FAI | Nordic | No | 705.1 | 44.8 | 10.37 | 61.82 | 44.18 | 0.57 | 1.69 | 12.15 | 4.41 | 3 |
| Sudbury | Folson | 17-4026-51425 | 35D_IA03_FOL | Nordic | Yes | 210.1 | 13.7 | 8.56 | 61.92 | 42.11 | 0.65 | 1.67 | 2.02 | 5.62 | 4 |
| Sudbury | Foucault \# 42 | 17-4009-51893 | 35D_IA03_L42 | Nordic | Yes | 68.6 | 14.3 | 8.61 | 66.02 | 44.01 | 1.19 | 1.09 | 4.53 | 7.34 | 1 |
| Sudbury | Friday | 17-4734-51994 | 35D_IA02_FRI | SLIN | Yes | 305.0 | 18.7 | 9.00 | 62.38 | 42.86 | 2.53 | 1.59 | 2.45 | 5.14 | 1 |
| Sudbury | Halfway | 17-4514-51934 | 35D_IA03_HAL | Nordic | No | 205.9 | 40.4 | 10.19 | 52.95 | 39.69 | 0.88 | 4.28 | 8.42 | 5.33 | 3 |
| Sudbury | Hannah | 17-4564-51144 | 35D_IA03_HAN | SLIN | Yes | 388.5 | 44.0 | 10.34 | 56.73 | 41.70 | 0.35 | 2.88 | 10.71 | 4.79 | 3 |
| Sudbury | Ishmael | 17-4542-51063 | 35D_IA03_ISH | Nordic | No | 73.0 | 23.2 | 9.32 | 50.38 | 37.52 | 0.25 | 5.61 | 3.22 | 6.92 | 4 |
| Sudbury | Jeanne | 17-4099-51964 | 35D_IA04_JEA | Nordic | Yes | 115.3 | 13.7 | 8.55 | 52.04 | 37.50 | 0.19 | 4.71 | 0.10 | 6.45 | 4 |
| Sudbury | Kettyle | 17-5356-51847 | 35D_IA00_KET | Nordic | No | 59.8 | 21.5 | 9.21 | 57.79 | 40.98 | 1.57 | 2.57 | 0.10 | 7.34 | 4 |
| Sudbury | Klondyke North | 17-4154-51623 | 35D_IA02_NOR | Nordic | Yes | 96.0 | 13.4 | 8.53 | 51.37 | 37.15 | 1.25 | 5.05 | 0.10 | 6.76 | 4 |
| Sudbury | Kumska | 17-4975-51827 | 33D_IA04_KUM | Nordic | Yes | 141.2 | 18.2 | 8.96 | 52.80 | 38.32 | 0.78 | 4.35 | 2.46 | 6.03 | 4 |
| Sudbury | Michaud | 17-4821-51845 | 35D_IA04_MIC | Nordic | No | 148.5 | 16.8 | 8.85 | 52.00 | 37.81 | 1.00 | 4.73 | 1.98 | 5.99 | 4 |
| Sudbury | Millen | 17-4113-51461 | 35D_IA03_MIL | Nordic | Yes | 84.9 | 14.9 | 8.67 | 60.93 | 41.79 | 0.30 | 1.85 | 1.02 | 6.92 | 4 |
| Sudbury | Nelson | 17-4928-51746 | 35D_IA04_NEL | Nordic | No | 308.8 | 22.8 | 9.30 | 47.47 | 36.04 | 1.86 | 7.61 | 9.96 | 5.09 | 3 |
| Sudbury | Pedro | 17-5352-51958 | 35D_IA04_PED | Nordic | No | 63.1 | 21.8 | 9.22 | 66.54 | 45.02 | 5.59 | 1.03 | 3.40 | 7.23 | 1 |


| District | Lake Name | WBY LID | FN2 Code | Standard | Random | Area (ha) | TDS | Omega (cm) | $\mathrm{L}_{\text {-inf }}(\mathrm{cm})$ | $\mathrm{L}_{\text {mat }}(\mathrm{cm})$ | Dobs (\# / ha) | $\mathrm{D}_{\text {msy }}$ (\# / ha) | $\mathrm{E}_{\text {obs }}$ (hrs/ha) | $\mathrm{E}_{\text {msy }}$ (hrs/ha) | Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sudbury | Rangers (Caribou) | 17-3909-51461 | 35D_IA02_CAR | Nordic | Yes | 233.7 | 22.8 | 9.29 | 44.15 | 34.34 | 3.37 | 10.79 | 7.24 | 5.36 | 3 |
| Sudbury | Rawson | 17-5330-51961 | 35D_IA03_RAW | Nordic | Yes | 164.1 | 18.7 | 9.00 | 34.00 | 28.63 | 1.13 | 31.31 | 4.31 | 5.82 | 4 |
| Sudbury | Rushbrook | 17-4302-51759 | 35D_IA02_RUS | Nordic | Yes | 174.1 | 21.7 | 9.22 | 53.59 | 38.98 | 0.49 | 4.00 | 4.41 | 5.70 | 4 |
| Sudbury | Sam Martin | 17-5156-51907 | 35D_IA03_SAM | SLIN | Yes | 151.7 | 19.3 | 9.05 | 46.47 | 35.29 | 1.39 | 8.45 | 15.13 | 5.91 | 3 |
| Sudbury | Shakwa | 17-4248-51802 | 35D_IA02_SHA | SLIN | Yes | 438.4 | 15.9 | 8.77 | 51.87 | 37.66 | 6.42 | 4.79 | 0.99 | 4.84 | 1 |
| Sudbury | Sinaminda | 17-4277-51933 | 35D_IA03_SIN | Nordic | Yes | 1076.2 | 18.2 | 8.96 | 60.98 | 42.17 | 0.07 | 1.84 | 0.68 | 4.20 | 4 |
| Sudbury | Sugarbush | 17-4569-52032 | 35D_IA03_SUG | Nordic | Yes | 54.4 | 14.1 | 8.59 | 54.92 | 38.91 | 1.57 | 3.48 | 6.63 | 7.84 | 4 |
| Sudbury | Three Narrows | 17-4670-51065 | 35D_IA03_THR | Nordic | No | 811.5 | 17.7 | 8.92 | 59.77 | 41.57 | 0.17 | 2.09 | 0.66 | 4.38 | 4 |
| Sudbury | Venetian | 17-4810-51976 | 35D_IA03_VEN | SLIN | Yes | 1019.7 | 17.5 | 8.90 | 60.75 | 42.00 | 0.14 | 1.89 | 3.83 | 4.24 | 4 |
| Sudbury | Walker | 17-4608-51161 | 35D_IA02_WKR | SLIN | Yes | 350.4 | 46.4 | 10.43 | 62.72 | 44.67 | 1.20 | 1.54 | 6.07 | 4.85 | 3 |
| Timmins | Little Burwash | 17-4930-52197 | 27D_IA04_LBU | SLIN | Yes | 95.2 | 45.3 | 10.39 | 50.22 | 38.50 | 3.69 | 5.70 | 3.64 | 6.16 | 4 |
| Timmins | Muskasenda | 17-4773-53267 | 27D_IA01_MUS | SPIN | Yes | 482.3 | 82.6 | 11.45 | 55.78 | 42.33 | 0.43 | 3.18 | 1.80 | 4.56 | 4 |
| Timmins | Oshawong | 17-4728-52266 | 27D_IA03_OSH | SLIN | Yes | 108.9 | 46.2 | 10.42 | 51.83 | 39.35 | 0.21 | 4.81 | 0.10 | 5.98 | 4 |
| Timmins | Pilon | 17-4860-52213 | 27D_IA03_PIL | Nordic | Yes | 76.5 | 15.1 | 8.69 | 50.55 | 36.93 | 1.98 | 5.51 | 3.85 | 7.10 | 4 |
| Timmins | Prune | 17-4902-52259 | 27D_IA04_PRU | SLIN | Yes | 198.3 | 20.2 | 9.11 | 55.76 | 39.91 | 3.88 | 3.19 | 0.56 | 5.57 | 1 |
| Timmins | Welcome | 17-4971-52299 | 27D_IA04_WEL | Nordic | Yes | 676.9 | 21.6 | 9.22 | 59.01 | 41.56 | 0.00 | 2.27 | 0.30 | 4.48 | 4 |
| Wawa | Anjigami | 16-6809-53004 | 23D_IA02_ANJ | SPIN | No | 1141.2 | 15.3 | 8.71 | 53.16 | 38.22 | 0.05 | 4.19 | 3.19 | 4.17 | 4 |
| Wawa | Dog | 16-7139-53538 | 23D_IA02_DOG | SPIN | No | 5330.4 | 64.0 | 10.98 | 68.21 | 47.88 | 0.22 | 0.86 | 11.53 | 3.76 | 3 |
| Wawa | Goetz | 16-6751-53308 | 23D_IA03_GOE | Nordic | Yes | 69.0 | 62.3 | 10.94 | 41.31 | 34.26 | 7.42 | 14.54 | 10.67 | 6.44 | 3 |
| Wawa | Manitowik | 16-6953-53376 | 23D_IA01_MAN | SPIN | No | 2680.3 | 75.2 | 11.28 | 65.56 | 46.94 | 0.59 | 1.14 | 3.79 | 3.92 | 4 |
| Wawa | Mijinemungshing | 16-6718-52845 | 34D_IA03_MIJ | Nordic | Yes | 604.6 | 13.3 | 8.51 | 50.95 | 36.93 | 7.70 | 5.28 | 3.71 | 4.60 | 1 |
| Wawa | Old Woman | 16-6710-52766 | 34D_IA04_OLD | Nordic | Yes | 267.9 | 11.7 | 8.34 | 55.63 | 38.94 | 2.34 | 3.23 | 2.74 | 5.38 | 4 |
| Wawa | Pivot | 16-6879-53337 | 23D_IA03_PIV | Nordic | Yes | 118.8 | 17.2 | 8.88 | 64.05 | 43.47 | 1.57 | 1.33 | 1.18 | 6.30 | 1 |
| Wawa | Treeby | 16-6606-53045 | 34D_IA04_TRE | Nordic | Yes | 138.2 | 37.9 | 10.09 | 44.61 | 35.32 | 4.96 | 10.28 | 6.31 | 5.77 | 3 |

Appendix 11: Updated water quality data for acid damaged lakes in NER.

| DISTRICT | WBY LID | LAKE NAME | LAT | LONG | DATE | Alk (mg/L) | pH | Cond ( $u$ mhos/cm) | TDS (mg/L) | DOC (mg/L) | Phosphorous (ug/L) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kirkland Lake | 17-5599-52502 | Lady Sydney | 472413 | 801220 | 07/03/2000 | 1.860 | 6.15 | 27.7 | 18.45 | 4.9 | 3.0 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| North Bay | 17-5827-52344 | Anima Nipissing | 471537 | 795414 | 19/05/2004 | 8.580 | 6.98 | 39.4 | 26.24 | 3.3 | 4.6 |
| North Bay | 17-5674-52374 | Barter | 471720 | 800625 | 19/05/2004 | 3.340 | 6.48 | 28.8 | 19.18 | 5.2 | 6.0 |
| North Bay | 17-5288-52236 | Benner | 471002 | 803714 | 07/03/2000 | 0.648 | 5.79 | 28.7 | 19.11 | 1.9 | 3.0 |
| North Bay | 17-5298-52239 | Bluesucker | 471010 | 803624 | 07/03/2000 | 0.680 | 5.70 | 30.0 | 19.98 | 2.9 | 2.4 |
| North Bay | 17-5317-52165 | Bull | 470613 | 803457 | 07/03/2000 | 1.323 | 6.12 | 33.1 | 22.05 | 2.9 | 6.6 |
| North Bay | 17-5371-52429 | Dees | 472025 | 803031 | 07/03/2000 | 1.922 | 6.22 | 26.5 | 17.65 | 2.6 | 3.8 |
| North Bay | 17-5335-52315 | Florence | 471428 | 803358 | 07/03/2000 | 0.135 | 5.35 | 28.1 | 18.72 | 1.9 | 2.8 |
| North Bay | 17-5467-52535 | Grays | 472607 | 802248 | 18/05/2004 | 0.300 | 5.37 | 19.9 | 13.25 | 4.3 | 3.6 |
| North Bay | 17-5804-52398 | Gullrock | 471833 | 795609 | 07/03/2000 | 3.371 | 6.20 | 26.9 | 17.92 | 4.5 | 4.0 |
| North Bay | 17-5263-52458 | Jerry | 472201 | 803911 | 07/03/2000 | -0.031 | 5.30 | 25.9 | 17.25 | 0.5 | 2.4 |
| North Bay | 17-5431-52386 | Jim Edwards | 471806 | 802551 | 07/03/2000 | 0.187 | 5.45 | 24.1 | 16.05 | 1.2 | 3.2 |
| North Bay | 17-5838-52437 | Justin | 472046 | 795330 | 07/03/2000 | 0.201 | 5.21 | 27.3 | 18.18 | 6.9 | 7.2 |
| North Bay | 17-5390-52352 | Landers | 471623 | 802841 | 07/03/2000 | -0.263 | 5.01 | 25.5 | 16.98 | 2.8 | 4.6 |
| North Bay | 17-5367-52152 | Linger | 470531 | 803055 | 07/03/2000 | 1.007 | 5.85 | 30.4 | 20.25 | 4.0 | 3.6 |
| North Bay | 17-5430-52549 | Makobe | 472644 | 802513 | 07/03/2000 | 1.766 | 6.25 | 26.7 | 17.78 | 3.0 | 6.0 |
| North Bay | 17-5258-52493 | Marina | 472352 | 803931 | 07/03/2000 | 0.648 | 5.59 | 29.3 | 19.51 | 2.7 | 4.0 |
| North Bay | 17-5274-52242 | Rodd | 471022 | 803816 | 07/03/2000 | 1.138 | 5.81 | 26.5 | 17.65 | 3.3 | 6.0 |
| North Bay | 17-5243-52488 | Smoothwater | 472344 | 804048 | 31/01/1996 | 1.408 | 6.15 | 32.5 | 21.65 | 1.9 | 2.0 |
| North Bay | 17-5670-52431 | Sugar | 472015 | 800634 | 12/07/2004 | 2.819 | 6.63 | 25.0 | 16.65 | 4.1 | 4.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| SSM | 16-7118-52382 | Grey Owl | 471550 | 841210 | 16/01/2001 | 0.429 | 5.52 | 14.6 | 9.70 | 4.0 | 4.0 |
| SSM | 17-3851-51403 | Hough | 462432 | 822939 | 29/01/2001 | 16.712 | 7.14 | 509.0 | 338.99 | 2.3 | 2.0 |
| SSM | 17-3797-51421 | McCabe | 462524 | 823357 | 04/05/2004 | 9.020 | 7.01 | 374.0 | 249.08 | 2.0 | 4.4 |
| SSM | 17-3872-51356 | Pecors | 462315 | 822743 | 29/01/2001 | 6.370 | 6.75 | 288.0 | 191.81 | 1.7 | 4.0 |
| SSM | 17-3810-51468 | Quirke | 462923 | 823307 | 29/01/2001 | 0.945 | 5.94 | 268.0 | 178.49 | 1.4 | 2.0 |
| SSM | 17-3414-51701 | Kirk | 464004 | 830425 | 29/01/2001 | 0.417 | 5.86 | 17.3 | 11.52 | 2.2 | 4.0 |
| SSM | 17-3852-51434 | May | 462556 | 822902 | 29/01/2001 | 13.921 | 7.14 | 642.0 | 427.57 | 2.5 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | 17-4657-50979 | Acid | 460209 | 812637 | 03/03/2000 | -0.584 | 4.89 | 28.7 | 19.11 | 1.9 | 4.4 |
| Sudbury | 17-5152-52045 | Barron | 465945 | 804759 | 06/03/2000 | 1.006 | 5.69 | 33.5 | 22.31 | 4.2 |  |
| Sudbury | 17-4836-51079 | Bell | 460742 | 811219 | 03/03/2000 | 0.383 | 5.29 | 28.7 | 19.11 | 5.4 | 7.2 |
| Sudbury | 17-5216-51846 | Bonhomme | 464903 | 804244 | 07/03/2000 | -0.652 | 4.87 | 34.0 | 22.64 | 4.4 | 11.6 |


| DISTRICT | WBY LID | LAKE NAME | LAT | LONG | DATE | Alk (mg/L) | pH | Cond ( $u$ mhos/cm) | TDS (mg/L) | DOC (mg/L) | Phosphorous (ug/L) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sudbury | 17-4835-52068 | Bowland | 470513 | 805031 | 08/03/2000 | 1.008 | 5.83 | 26.6 | 17.72 | 2.9 | 5.2 |
| Sudbury | 17-5002-51098 | Broker | 460842 | 805941 | 03/03/2000 | 0.402 | 5.34 | 29.3 | 19.51 | 3.8 | 7.0 |
| Sudbury | 17-4630-50974 | Burke | 460152 | 812845 | 03/03/2000 | -0.355 | 5.00 | 26.2 | 17.45 | 2.8 | 6.6 |
| Sudbury | 17-5229-51902 | Caswell | 465151 | 804230 | 06/03/2000 | 0.285 | 5.48 | 31.0 | 20.65 | 1.3 | 6.6 |
| Sudbury | 17-4987-51346 | Chief | 462143 | 810102 | 03/03/2000 | -0.285 | 4.95 | 32.2 | 21.45 | 1.8 | 6.0 |
| Sudbury | 17-5240-51985 | Chiniguchi | 465612 | 804148 | 07/03/2000 | -0.110 | 5.34 | 31.7 | 21.11 | 0.8 | 3.2 |
| Sudbury | 17-5377-51779 | Chuggin | 464520 | 803024 | 06/03/2000 | 1.595 | 6.10 | 29.3 | 19.51 | 2.8 | 6.8 |
| Sudbury | 17-5379-51863 | Colin Scott | 464949 | 803013 | 06/03/2000 | -0.180 | 5.20 | 33.6 | 22.38 | 0.4 | 2.2 |
| Sudbury | 17-4776-51097 | David | 460823 | 811733 | 03/03/2000 | -0.407 | 5.02 | 23.9 | 15.92 | 1.1 | 3.0 |
| Sudbury | 17-5241-52013 | Davis | 465741 | 804035 | 07/03/2000 | 0.392 | 5.46 | 27.4 | 18.25 | 2.9 | 4.0 |
| Sudbury | 17-5254-51902 | Dewdney | 465219 | 803851 | 06/03/2000 | -0.406 | 4.97 | 33.3 | 22.18 | 0.9 | 3.2 |
| Sudbury | 17-5370-51830 | Donald | 464801 | 803053 | 06/03/2000 | -0.192 | 5.17 | 33.4 | 22.24 | 0.6 | 1.8 |
| Sudbury | 17-5253-52060 | Dougherty | 470041 | 804001 | 06/03/2000 | -0.741 | 4.81 | 33.9 | 22.58 | 0.3 | 2.4 |
| Sudbury | 17-5381-51884 | Edna | 465007 | 802941 | 06/03/2000 | 1.208 | 5.96 | 32.7 | 21.78 | 3.6 | 4.4 |
| Sudbury | 17-4518-52073 | Elboga | 470113 | 813809 | 08/03/2000 | 3.010 | 6.01 | 121.8 | 81.12 | 6.5 | 9.6 |
| Sudbury | 17-4809-51809 | Foy | 464634 | 811504 | 08/03/2000 | -0.568 | 4.89 | 29.2 | 19.45 | 2.2 | 6.6 |
| Sudbury | 17-5089-51954 | Fraleck | 465454 | 805257 | 12/07/2004 | 0.997 | 6.10 | 21.2 | 14.12 | 4.0 | 5.5 |
| Sudbury | 17-5267-51920 | Franks | 465253 | 803840 | 06/03/2000 | -0.712 | 4.76 | 34.0 | 22.64 | 1.5 | 2.8 |
| Sudbury | 17-5228-52091 | Frederick | 470217 | 804155 | 08/03/2000 | -0.257 | 5.08 | 32.1 | 21.38 | 0.9 | 3.2 |
| Sudbury | 17-4690-50971 | George | 460150 | 812401 | 03/03/2000 | 1.087 | 5.83 | 30.4 | 20.25 | 1.9 | 3.6 |
| Sudbury | 17-4535-51088 | Grace | 460800 | 813604 | 03/03/2000 | -0.095 | 5.21 | 24.3 | 16.18 | 2.4 | 4.0 |
| Sudbury | 17-4723-51114 | Great Mountain | 460926 | 812134 | 03/03/2000 | 0.067 | 5.29 | 24.5 | 16.32 | 1.9 | 5.4 |
| Sudbury | 17-4826-51036 | Johnnie | 460513 | 811330 | 03/03/2000 | 0.879 | 5.69 | 28.5 | 18.98 | 3.8 | 6.8 |
| Sudbury | 17-4750-51010 | Kakakise | 460354 | 811911 | 03/03/2000 | 2.739 | 6.36 | 31.3 | 20.85 | 2.8 | 4.8 |
| Sudbury | 17-5356-51847 | Kettyle | 464843 | 803218 | 06/03/2000 | 0.455 | 7.64 | 32.3 | 21.51 | 1.5 | 3.4 |
| Sudbury | 17-4723-51015 | Killarney | 460408 | 812120 | 03/03/2000 | -0.491 | 4.94 | 28.0 | 18.65 | 1.7 | 3.6 |
| Sudbury | 17-3921-51464 | Kindle | 462752 | 822418 | 29/01/2001 | 1.820 | 6.15 | 232.0 | 154.51 | 2.3 | 4.0 |
| Sudbury | 17-5344-51754 | Kukagami | 464357 | 803303 | 06/03/2000 | 2.506 | 6.45 | 40.3 | 26.84 | 1.9 | 6.2 |
| Sudbury | 17-5462-51807 | Kelly \# 27 | 464644 | 803155 | 06/03/2000 | 0.909 | 5.86 | 32.1 | 21.38 | 2.2 | 2.0 |
| Sudbury | 17-5216-51920 | Aylmer \# 37 | 465231 | 804237 | 06/03/2000 | -0.803 | 4.72 | 32.1 | 21.38 | 1.4 | 50.0 |
| Sudbury | 17-5110-52189 | Laundrie | 470732 | 805116 | 08/03/2000 | 0.604 | 5.52 | 29.0 | 19.31 | 4.3 | 10.2 |
| Sudbury | 17-5393-51873 | Lower Matagamasi | 465010 | 802904 | 06/03/2000 | 1.418 | 6.05 | 32.7 | 21.78 | 3.2 | 5.2 |
| Sudbury | 17-4665-50976 | Lumsden | 460131 | 812559 | 03/03/2000 | -0.229 | 5.03 | 24.1 | 16.05 | 1.5 | 3.4 |
| Sudbury | 17-4573-51969 | MacDonald | 465536 | 813336 | 08/03/2000 | 0.640 | 5.68 | 23.0 | 15.32 | 3.0 | 4.8 |
| Sudbury | 17-5292-51958 | Marjorie | 465436 | 803714 | 06/03/2000 | -1.202 | 4.59 | 33.5 | 22.31 | 1.4 | 5.0 |
| Sudbury | 17-5427-51794 | Maskinonge | 464625 | 802625 | 06/03/2000 | 2.356 | 6.28 | 34.7 | 23.11 | 2.6 | 3.4 |


| DISTRICT | WBY LID | LAKE NAME | LAT | LONG | DATE | Alk (mg/L) | pH | Cond ( $u$ mhos/cm) | TDS (mg/L) | DOC (mg/L) | Phosphorous (ug/L) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sudbury | 17-5305-51809 | Matagamasi | 464626 | 803620 | 06/03/2000 | 0.380 | 5.51 | 31.5 | 20.98 | 1.8 | 4.8 |
| Sudbury | 17-4821-51845 | Michaud | 464837 | 811403 | 08/03/2000 | 0.987 | 5.77 | 25.3 | 16.85 | 3.6 | 6.6 |
| Sudbury | 17-5395-51925 | Mickey | 465306 | 802857 | 06/03/2000 | 2.238 | 5.83 | 36.3 | 24.18 | 8.2 | 6.0 |
| Sudbury | 17-4594-51088 | Nellie | 460800 | 813132 | 03/03/2000 | -1.291 | 4.61 | 37.3 | 24.84 | 0.1 | 0.8 |
| Sudbury | 17-3887-51486 | Nook | 462845 | 822632 | 29/01/2001 | 1.658 | 6.09 | 250.0 | 166.50 | 1.4 | 2.0 |
| Sudbury | 17-4759-51035 | Norway | 460514 | 811832 | 03/03/2000 | -0.073 | 5.18 | 27.5 | 18.32 | 0.9 | 2.0 |
| Sudbury | 17-4691-51000 | O.S.A. | 460312 | 812353 | 03/03/2000 | -0.758 | 4.80 | 35.0 | 23.31 | 0.6 | 2.2 |
| Sudbury | 17-5308-52065 | Parsons | 470049 | 803538 | 06/03/2000 | 1.325 | 5.57 | 37.6 | 25.04 | 7.7 | 7.6 |
| Sudbury | 17-5352-51958 | Pedro | 465459 | 803215 | 06/03/2000 | 1.676 | 6.19 | 32.7 | 21.78 | 2.4 | 4.0 |
| Sudbury | 17-4836-51150 | Peter | 461124 | 811250 | 03/05/2004 | 4.310 | 6.62 | 35.9 | 23.91 | 3.0 | 6.4 |
| Sudbury | 17-5396-51819 | Potvin | 464730 | 802849 | 06/03/2000 | -0.289 | 5.01 | 35.1 | 23.38 | 0.8 | 4.0 |
| Sudbury | 17-4885-51790 | Rand | 464608 | 810858 | 08/03/2000 | 0.193 | 5.09 | 26.3 | 17.52 | 6.2 | 13.6 |
| Sudbury | 17-5330-51961 | Rawson | 465503 | 803400 | 06/03/2000 | 1.096 | 5.92 | 34.7 | 23.11 | 2.7 | 4.8 |
| Sudbury | 17-4806-51039 | Ruth-Roy | 460525 | 811502 | 02/01/2001 | -0.918 | 4.72 | 26.5 | 17.65 | 1.0 | 2.0 |
| Sudbury | 17-5267-51883 | Silvester | 465029 | 803843 | 06/03/2000 | -0.478 | 4.93 | 33.3 | 22.18 | 1.4 | 13.0 |
| Sudbury | 17-5228-52105 | Stouffer | 470357 | 804058 | 08/03/2000 | 0.509 | 5.49 | 30.2 | 20.11 | 2.0 | 5.2 |
| Sudbury | 17-5165-51976 | Telfer | 465645 | 804718 | 06/03/2000 | -0.251 | 5.10 | 30.2 | 20.11 | 1.0 | 4.0 |
| Sudbury | 17-4670-51065 | Three Narrows | 460647 | 812519 | 03/03/2000 | 0.257 | 5.46 | 26.6 | 17.72 | 3.1 | 11.6 |
| Sudbury | 17-4910-51070 | Tyson | 460701 | 810659 | 03/03/2000 | 1.173 | 5.96 | 31.2 | 20.78 | 3.9 | 7.2 |
| Sudbury | 17-4923-51272 | Wavy | 461809 | 810533 | 03/03/2000 | -0.660 | 4.85 | 31.8 | 21.18 | 3.4 | 11.4 |
| Sudbury | 17-3974-51436 | Whiskey | 462623 | 822007 | 29/01/2001 | 1.199 | 6.06 | 239.0 | 159.17 | 1.4 | 4.0 |
| Sudbury | 17-5000-51272 | White Oak | 461756 | 805952 | 03/03/2000 | 0.373 | 5.49 | 31.4 | 20.91 | 3.1 | 7.6 |
| Sudbury | 17-5128-52363 | White Pine | 471655 | 804950 | 07/03/2000 | 1.681 | 6.21 | 26.4 | 17.58 | 3.1 | 3.4 |
| Sudbury | 17-5279-51902 | Wolf | 465110 | 803755 | 06/03/2000 | -0.306 | 5.02 | 32.9 | 21.91 | 1.1 | 2.0 |
| Wawa | 16-6882-52534 | Black Beaver | 472432 | 843022 | 16/01/2001 | 0.507 | 5.79 | 14.2 | 9.46 | 2.0 | 2.0 |
| Wawa | 16-6933-52436 | Hubert | 471930 | 842630 | 16/01/2001 | 0.984 | 5.91 | 14.5 | 9.66 | 2.2 | 4.0 |
| Wawa | 16-6981-52469 | Little Agawa | 472051 | 842235 | 16/01/2001 | 1.451 | 5.93 | 15.0 | 9.97 | 4.4 | 8.0 |
| Wawa | 16-6520-53237 | Molybdenite | 480303 | 845738 | 16/01/2001 | 0.210 | 5.32 | 17.9 | 11.94 | 6.9 | 8.0 |
| Wawa | 16-6930-52450 | North Hubert | 471949 | 842641 | 16/01/2001 | 0.918 | 5.87 | 14.4 | 9.60 | 2.1 | 4.0 |



| DISTRICT | LAKE | YEAR | $\begin{array}{\|c\|} \hline \# \\ \text { SETS } \end{array}$ | CATCH (\# of individuals collected by species) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 80 | 81 | 82 | 91 | 93 | 121 | 131 | 141 | 162 | 163 | 182 | 183 | 185 | 194 | 198 | 200 | 201 | 206 | 208 | 209 | 212 | 214 | 233 | 271 | 281 | 284 | 311 | 313 | 314 | 316 | 317 | 331 | 334 | 338 | 341 | 342 | 380 | 382 |
| Kirkland L. | Lady Sydney | 2001 | 40 |  | 17 |  | 343 |  |  |  |  |  | 3 |  |  | 11 |  |  |  |  |  |  |  |  |  |  |  |  |  | 113 |  |  |  |  | 869 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NBay | Barter | 2002 | 40 |  | 79 |  |  | 42 |  |  |  |  | 36 |  |  |  | 361 | 214 |  |  |  | 33 |  | 4 |  |  |  |  |  | 74 | 4 |  |  |  | 957 |  |  |  |  | 10 |  |
| NBay | Benner | 2001 | 26 |  | 58 |  |  |  |  |  |  |  | 43 | 30 |  | 248 |  |  |  |  |  |  | 4 |  | 8 |  |  | 9 |  |  |  |  |  |  |  |  | 1 |  |  |  |  |
| NBay | Bluesucker | 2000 | 40 | 13 | 41 |  |  |  |  |  |  |  | 145 | 62 |  |  |  |  |  |  |  |  | 4 |  |  |  |  | 13 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NBay | Dees | 2002 | 24 | 7 |  |  | 25 | 45 |  |  |  | 150 | 31 |  |  | 99 | 6 |  |  |  |  |  |  | 184 | 17 |  |  |  |  |  |  |  |  |  | 782 |  | 1 |  |  |  |  |
| NBay | Florence | 2000 | 56 | 4 |  |  |  |  |  |  |  |  | 55 |  |  | 15 | 25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1478 |  |  |  |  |  |  |
| NBay | Grays | 2001 | 32 | 1 |  |  | 30 |  |  |  |  |  | 218 |  |  | 31 | 3 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1383 |  |  |  |  |  |  |
| NBay | Jerry | 2002 | 32 | 32 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3 | 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NBay | Jim Edwards | 2002 | 32 | 113 | 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 45 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NBay | Linger | 2002 | 20 |  | 15 |  |  |  |  | 5 |  |  | 27 |  |  |  | 1 |  |  |  |  |  |  | 7 |  |  |  |  |  | 200 | 71 | 85 |  |  | 707 |  |  |  |  |  |  |
| NBay | Marina | 2001 | 16 | 2 |  |  |  |  |  |  |  |  | 84 |  |  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  | 1592 |  |  |  |  |  |  |
| NBay | Rodd | 2001 | 16 |  | 7 |  |  |  |  |  |  |  | 76 |  |  | 97 |  |  |  |  |  |  |  |  |  |  | 4 |  |  |  |  |  |  |  | 413 |  |  |  |  |  |  |
| NBay | Sugar | 2001 | 40 |  | 11 |  | 181 |  |  | 1 |  |  | 10 |  |  |  |  | 7 |  |  |  | 15 |  |  |  |  | 9 |  |  | 151 | 4 |  | 117 |  | 322 |  |  |  | 1 |  |  |
| NBay | Turner | 2001 | 40 |  | 10 |  | 234 |  |  |  |  |  | 97 |  |  | 459 | 1 |  |  |  |  |  |  |  |  |  | 17 |  |  |  |  |  |  |  |  |  |  |  | 98 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SSM | Grey Owl | 2000 | 40 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SSM | Kirk | 2001 | 24 |  |  |  |  |  |  |  |  |  |  | 316 |  |  |  |  |  |  |  |  |  |  |  |  |  | 73 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SSM | May | 2002 | 48 |  | 15 |  |  |  |  |  |  |  | 104 | 8 |  | 122 |  | 465 |  |  |  |  |  | 110 |  |  | 35 | 1 |  |  | 160 |  |  |  | 2 |  | 14 |  |  |  |  |
| SSM | McCabe | 2002 | 39 |  | 19 |  | 2 |  |  |  |  |  | 254 | 30 |  | 16 |  |  |  |  |  |  |  |  | 397 |  | 74 |  |  |  | 65 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Barron | 2001 | 16 |  | 1 |  |  |  |  |  |  |  | 51 |  |  | 48 |  |  |  |  |  |  |  |  |  |  |  |  |  | 807 |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Bell | 2001 | 48 |  | 9 |  | 9 | 424 |  | 19 |  |  | 40 |  |  |  | 18 |  |  |  |  | 38 |  |  |  | 30 |  |  |  | 184 | 41 |  | 74 |  | 709 |  |  |  |  |  |  |
| Sudbury | Bowland | 2003 | 40 |  | 25 |  |  |  |  |  |  |  | 13 |  |  |  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 912 |  |  |  |  |  |  |
| Sudbury | Broker | 2000 | 32 |  |  |  |  | 33 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 78 |  |  |  | 1865 |  |  |  |  |  |  |
| Sudbury | Caswell | 2002 | 24 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Chiniguchi | 2000 | 56 |  | 3 |  |  |  |  |  | 1 |  | 160 |  |  |  |  |  |  | 1 |  |  |  |  |  | 19 |  |  |  |  |  |  | 51 |  | 2157 |  |  |  |  |  |  |
| Sudbury | Chuggin | 2001 | 16 |  | 12 |  |  |  |  |  | 1 |  |  | 1 |  |  | 1 |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  | 1919 |  |  |  |  |  |  |
| Sudbury | Colin Scott | 2000 | 32 |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Davis | 2000 | 16 |  |  |  |  |  |  |  | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 880 |  |  |  |  |  |  |
| Sudbury | Donald* | 2000 | 42 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |  | 1629 |  |  |  |  |  |  |
| Sudbury | Elboga | 2002 | 16 |  | 1 |  |  |  |  |  |  | 167 | 13 | 786 | 73 | 392 |  | 48 |  |  |  |  | 21 |  |  |  |  | 37 |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| Sudbury | Fraleck | 2003 | 32 |  | 1 |  |  |  |  |  |  |  | 24 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 46 |  | 222 | 57 |  |  |  |  |  |
| Sudbury | George | 2001 | 40 |  | 6 |  |  | 253 |  |  |  |  | 7 |  |  |  |  |  |  |  |  | 3 |  |  |  | 24 |  |  |  | 535 | 15 |  | 106 |  | 284 |  |  |  |  |  |  |
| Sudbury | GreatMountain | 2002 | 40 |  | 7 |  |  | 349 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59 |  | 117 | 347 |  |  |  |  |  |  |  |
| Sudbury | Johnnie | 2000 | 48 |  | 20 |  | 2 | 136 |  | 1 |  |  | 55 |  |  |  | 15 |  |  |  |  |  |  |  |  | 31 |  |  |  | 312 | 3 |  | 118 |  | 239 |  |  | 2 |  |  |  |
| Sudbury | Kakakise | 2001 | 40 |  | 1 |  |  | 244 |  | 1 |  |  | 10 |  |  |  |  |  |  |  |  | 77 |  |  |  |  |  |  |  | 351 | 45 |  | 138 |  | 204 |  | 1 |  | 3 |  |  |
| Sudbury | Kelly \# 27 | 2001 | 14 |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 767 |  |  |  |  |  |  |


| DISTRICT | LAKE | YEAR | $\begin{array}{\|c\|} \hline \# \\ \text { SETS } \end{array}$ | CATCH (\# of individuals collected by species) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 80 | 81 | 82 | 91 | 93 | 121 | 131 | 141 | 162 | 163 | 182 | 183 | 185 | 194 | 198 | 200 | 201 | 206 | 208 | 209 | 212 | 214 | 233 | 271 | 281 | 284 | 311 | 313 | 314 | 316 | 317 | 331 | 334 | 338 | 341 | 342 | 380 | 382 |
| Sudbury | Kettyle | 2000 | 32 |  | 17 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Kindle | 2000 | 47 |  | 4 |  | 1 | 67 |  |  |  |  | 38 |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  | 887 |  |  | 52 |  |  |  |  |  |  |  |  |
| Sudbury | Kukagami | 2003 | 64 |  | 33 |  | 192 |  |  |  |  |  | 167 |  |  |  |  |  |  |  |  |  |  |  | 2 | 8 | 43 |  |  | 5 |  |  | 40 |  | 2374 | 74 |  |  |  |  |  |
| Sudbury | L. Matagamasi | 2000 | 32 |  | 1 |  |  | 113 |  |  |  |  | 29 |  |  | 1 |  | 23 |  |  |  |  |  |  |  |  |  |  |  | 109 | 2 |  | 100 |  | 112 |  | 2 |  |  |  |  |
| Sudbury | Laundrie | 2003 | 33 |  | 4 |  |  |  |  |  |  |  | 253 |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 32 |  | 1726 |  |  |  |  |  |  |
| Sudbury | Low | 2001 | 24 |  |  |  |  | 36 | 17 |  |  |  |  |  |  |  |  |  |  |  |  | 3 |  |  |  | 2 |  |  |  | 101 | 5 | 51 | 53 | 3 | 52 |  | 1 |  |  |  | 2 |
| Sudbury | Matagamasi | 2000 | 56 |  | 40 |  |  |  |  | 1 |  |  | 34 |  |  |  | 4 |  |  | 1 |  |  |  |  |  | 212 |  |  |  | 265 |  |  | 55 |  | 684 | 9 |  |  |  |  |  |
| Sudbury | Michaud | 2004 | 40 |  | 20 |  |  |  |  |  | 1 |  | 19 |  |  |  | 24 | 267 |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  | 412 |  |  |  |  |  |  |
| Sudbury | Nook | 2000 | 16 |  | 3 |  |  | 19 |  |  |  | 1 | 32 |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  | 380 |  |  | 14 |  | 6 |  |  |  |  |  |  |
| Sudbury | Parsons | 2001 | 24 |  |  |  |  |  |  |  | 6 |  | 90 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 13 |  |  | 18 |  |  |  |  |  |
| Sudbury | Pedro | 2005 | 24 |  | 59 |  |  |  |  |  |  |  | 707 | 42 | 10 |  |  | 3 |  |  |  |  |  |  | 11 |  |  | 14 |  | 136 |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Peter | 2003 | 30 |  | 2 |  |  | 146 |  |  |  |  | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 208 | 10 |  | 108 |  | 177 |  |  |  | 9 |  |  |
| Sudbury | Rawson | 2003 | 40 |  | 75 |  |  |  |  |  |  |  | 117 |  |  | 18 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 |  | 313 |  | 105 |  |  |  |  |  |  |
| Sudbury | Stouffer* | 2000 | 30 |  |  |  |  |  |  | 8 |  |  | 62 |  |  |  |  | 77 |  |  |  |  |  |  |  |  |  |  |  | 414 |  |  |  |  | 626 |  |  |  |  |  |  |
| Sudbury | Telfer* | 2000 | 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sudbury | Three Narrows | 2003 | 48 |  | 2 |  |  | 150 |  | 6 |  |  | 3 |  |  |  |  |  | 91 |  |  | 26 |  |  |  | 38 |  |  |  | 232 | 17 | 27 | 95 |  | 304 | 1 |  |  |  |  |  |
| Sudbury | Tyson | 2001 | 53 |  | 5 |  |  | 155 |  | 1 |  |  | 42 |  |  |  | 29 |  |  |  |  | 2 |  |  |  | 53 |  |  |  | 243 | 32 |  | 105 | 2 | 773 |  |  |  | 19 |  |  |
| Sudbury | Wavy | 2004 | 40 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2313 |  |  |  |  |  |  |
| Sudbury | Whiskey | 2002 | 56 | 1 | 66 |  |  | 110 | 3 |  |  |  | 63 |  |  |  |  | 1 |  |  |  |  |  |  |  |  | 1 | 1 |  | 1143 |  |  | 54 |  | 32 | 2 |  |  |  |  | 1 |
| Sudbury | White Oak | 2003 | 48 |  | 12 |  |  |  |  |  |  |  | 3 |  |  |  | 45 |  |  |  |  |  |  |  | 36 | 80 |  |  |  |  | 89 |  |  |  | 2329 |  |  |  |  |  |  |
| Sudbury | White Pine | 2004 | 24 |  | 38 |  |  |  |  |  |  |  | 32 |  | 3 |  | 21 | 1 |  |  |  |  |  | 22 | 51 |  | 5 |  |  |  |  |  |  |  | 255 |  | 7 |  |  |  |  |
| Sudbury | Wolf* | 2000 | 34 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 713 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Wawa | Hubert* | 2000 | 8 | 13 | 8 |  |  |  |  |  |  |  |  |  |  | 3 |  |  |  |  |  |  |  | 6 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Wawa | Little Agawa* | 2000 | 30 |  | 73 |  |  |  |  |  |  |  |  |  |  |  | 10 |  |  | 1 |  |  |  | 21 |  |  |  | 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Wawa | Molybdenite* | 2000 | 24 |  | 7 |  |  |  |  |  |  |  |  | 2 |  | 20 |  |  |  |  |  |  |  |  | 13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Note*: Surveys completed on Donald, Hubert, Little Agawa, Molybdenite, Stouffer, Telfer, and Wolf Lakes were non-standard (ie. completed after September 15th and /or below recommended netting effort)
Key to Species Captured

| 080 - brook trout | 121 - rainbow smelt | 182 - northern redbelly dace | 200 - blacknose shiner | 212 - creek chub | 284 - fourspine stickleback | 317 - largemouth bass | 342 - logperch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 081 - lake trout | 131 - northern pike | 183 - finescale dace | 201 - spottail shiner | 214 - pearl dace | 311 - rock bass | 331 - yellow perch | 380 - sculpin species |
| 082 - splake | 141 - central mudminnow | 185 - lake chub | 206 - mimic shiner | 233 - brown bullhead | 313 - pumpkinseed | 334 - walleye | 382 - slimy sculpin |
| 091 - lake whitefish | 162 - longnose sucker | 194 - golden shiner | 208 - bluntnose minnow | 271 - burbot | 314 - bluegill | 338 - Iowa darter |  |
| 093 - lake herring (cisco) | 163 - white sucker | 198 - common shiner | 209 - fathead minnow | 281-brook stickleback | 316 - smallmouth bass | 341 - johnny darter |  |

Appendix 13: Supplemental information gathered regarding damaged lakes in Wawa, Sault Ste. Marie, and Sudbury (Espanola Area) Districts. Note: for historic information regarding other damaged lakes in Sudbury and North Bay Districts Lakes refer to Polkinghorne and Gunn (1981) and McCrudden (1993) respectively.

## Sault Ste. Marie District

Grey Owl Lake (Status = R2)

- Little historic information available, given a maximum depth of 31 m and the fact that pH is still depressed (5.52 in 2001) it is assumed that anecdotal reports re: historic presence of lake trout are accurate and that the population was extirpated as a result of acidification
- Extent of pH depression unknown: pH measurements averaged 5.20 in 1982/83 with readings in shoreline areas as low as 4.6
- Nordic Survey 2000: no fish caught
- Lake trout restoration initiated 2001

Hough Lake (Status = R)

- Impacted by Elliot Lake uranium mining, native lake trout population lost / degraded
- Restocked 1984 to 1996
- Unsure of present status - needs to be assessed
- Potential need for additional stocking

Kirk Lake (Status = R2)

- An acid sensitive lake - no point source of pollution
- Lake trout present and reproducing at time of original 1971 lake survey ( pH 7.0 to 7.5)
- Extent of pH depression unknown: $\mathrm{pH}=5.79$ in 2001, measurements as low as 5.57 in 1981
- Lake trout population lost to pH depression or exploitation (or both)
- Nordic Survey 2001: no lake trout present
- Lake trout restoration initiated 2003

May Lake (Status = R1)

- Impacted by Elliot Lake uranium mining, native lake trout population lost / degraded
- Restocked 1984 to 2002
- Nordic Survey 2002: 12 of 15 lake trout sampled unclipped (natural recruitment)
- Lake trout stocking discontinued - allow continued recovery

McCabe Lake (Status = R1)

- Impacted by Elliot Lake uranium mining, native lake trout population lost / degraded
- Restocked 1984, 1985 \& 1991 to 2002
- Nordic Survey 2002: 15 of 19 lake trout sampled unclipped (natural recruitment)
- Lake trout stocking discontinued - allow continued recovery

Nordic Lake (Status = R)

- Impacted by Elliot Lake uranium mining, native lake trout population lost / degraded
- Restocked 1988 to 1998, stocking discontinued - lost road access
- Unsure of present status - needs to be assessed
- Potential need for additional stocking

Pecors Lake (Status = N1)

- Impacted by Elliot Lake uranium mining - last impacted lake in Serpent River chain
- Native lake trout population degraded
- Remnant lake trout population likely comprised of native stock - only stocked once (1995)
- SLIN Survey 2000: 4 unclipped lake trout, 2 below length of maturity (natural recruitment but very low abundance)
- Monitor for continued natural recovery
- Potential need for additional stocking

Quirke (Status = R1)

- Impacted by Elliot Lake uranium mining, native lake trout population lost / degraded
- Restocked 1986 to 1992 \& 1996 to 2000
- Evidence of natural recruitment, stocking discontinued, allow continued recovery
- Catch \& release fishery only since January 1998


## Sudbury District (Espanola Area)

Kindle Lake (Status = R2)

- Impacted by Elliot Lake uranium mining, native lake trout population lost / degraded
- Restocked 1984 to 1993 - fishery closed 1994 to 1999 following a planting of adult broodstock in 1993 in an attempt to address coregonid barrier
- Nordic Survey 2000: present lake trout abundance low, 4 lake trout captured, 3 large adults remaining from 1993 planting and 1 small unclipped fish (the small unclipped fish either related to emigration from Quirke Lake as per Nook Lake comment or a natural recruit)
- Lake trout restoration effort resumed in 2001 - stocking of 2 year olds

Nook Lake (Status = R2)

- Impacted by Elliot Lake uranium mining, native lake trout population lost / degraded
- Very little historic information available - given a maximum depth of 18 m and the location of this lake relative to other lake trout lakes in the Serpent River system it is assumed that anecdotal reports re: historic presence of lake trout are accurate
- Nordic Survey 2000: present lake trout abundance low, 3 lake trout captured, 2 large unclipped fish and 1 small clipped fish (the three lake trout captured most likely the result of emigration of stocked lake trout from Quirke Lake located immediately upstream)
- Lake trout restoration initiated in 2001

Whiskey Lake (Status = R2)

- Impacted by Elliot Lake uranium mining, native lake trout population lost / degraded
- Restocked 1983 to 2005
- Nordic Survey 2002: 60 of 66 lake trout sampled unclipped, although the significant number of unclipped fish would seem to indicate strong natural recruitment local managers remain unconvinced (the unclipped fish likely in part related to stocking of 2400 unclipped broodstock in 2001)
- Suggest continued monitoring with a view to discontinue stocking in favour of natural recruitment


## Wawa District

Black Beaver (Status = N1)

- An acid sensitive lake - no point source of pollution, located just north of Montreal River
- Lake trout present at time of original 1980 Lake Survey
- Extent of pH depression unknown: $\mathrm{pH}=5.79$ in 2001; measurements in1983 range 4.7-5.3
- No record of lake trout stocking
- Lake trout presently self-sustaining - a reflection of limited impact and / or natural recovery

Hubert (Status = N1)

- An acid sensitive lake - no point source of pollution, located just north of Montreal River
- Lake trout present at time of original 1978 Lake Survey - abundance low
- Extent of pH depression unknown: $\mathrm{pH}=5.91$ in 2001, measurements as low as 5.4 in 1983
- No record of lake trout stocking
- Nordic Survey 2000 (non-standard timing \& netting effort): 8 lake trout caught in 8 sets
- Lake trout presently self-sustaining - a reflection of limited impact and / or natural recovery


## Little Agawa (Status = I1)

- An acid sensitive lake - no point source of pollution, located just north of Montreal River
- Lake trout reported to have been present historically; however, this has never been verified there were no lake trout present at time of original 1979 lake survey (suspected that this lake only supported brook trout historically)
- Extent of pH depression unknown: $\mathrm{pH}=5.93$ in 2001, measurements as low as 5.5 in 1983
- Record of a single stocking of lake trout in 1991
- Nordic Survey 2000 (non-standard timing and netting effort): 35 of 73 lake trout sampled were unclipped
- Introduced (or re-introduced) lake trout population presently self-sustaining

Molybdenite (Status = R2)

- Impacted by historic smelting operations near Wawa
- Extent of pH depression unknown: $\mathrm{pH}=5.32$ in 2001, measurements as low as 5.0 in 1978
- No lake trout present at time of original 1978 lake survey, District suspects that this lake never supported a native lake trout population despite anecdotal reports re: historic lake trout presence
- Record of a single stocking of lake trout in 1991
- Nordic Survey 2000 (non-standard timing and effort): 7 clipped lake trout sampled, a result of 1991 stocking
- Lake trout stocking resumed in 2005

North Hubert (Status = N1)

- Lake trout present at time of original 1978 Lake Survey
- Extent of pH depression unknown: $\mathrm{pH}=5.87$ in 2001, measurements in 1978 range 6.0-6.5
- No record of lake trout stocking
- Lake trout presently self-sustaining - a reflection of limited impact and / or natural recovery

Appendix 14: Record of stocking completed towards restoration of acid damaged lake trout lakes in NER (including historic stocking events).

| District | Lake | Pre 2001 Stocking | Recent Stocking - Northeast Lake Trout Project |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2001 | 2002 | 2003 | 2004 | 2005 |
| North Bay | Dees | None |  |  |  |  | 5002 yr olds |
| North Bay | Florence | 1953-54 \& 1977 | 9900 ylgs | 10000 ylgs | 11000 ylgs |  |  |
| North Bay | Grays | None |  | 2000 ylgs |  | 2000 ylgs |  |
| North Bay | Gullrock | 1977, 1988, 1998-2000 |  |  |  |  |  |
| North Bay | Jerry | None |  |  |  |  | 500 ylgs |
| North Bay | Marina | None |  |  | 500 ylgs |  | 500 ylgs |
|  |  |  |  |  |  |  |  |
| SSM | Grey Owl | None |  | 2400 ML ylgs | 2400 ML ylgs |  | 1375 MP ylgs 1100 MsL ylg |
| SSM | Kirk | None |  |  | 600 ML ylgs |  | 600 ML ylgs |
|  |  |  |  |  |  |  |  |
| Sudbury | Bell | $\begin{gathered} 1984-89 \& 1992 \\ 5635 \mathrm{ML} @ 0.8 \mathrm{~kg} \text { in } 92 \end{gathered}$ | 255 ML @ 4.2kg |  | 164 ML @ 2.4kg |  |  |
| Sudbury | Broker | 1994 (500 Seneca Adults) | 324 Simcoe @ 1.0 kg <br> 162 2yr old \& 324 ylgs | $\begin{gathered} 460 \text { Simcoe @ } 1.5 \mathrm{~kg} \\ 8002 \mathrm{yr} \text { olds } \\ \hline \end{gathered}$ |  |  |  |
| Sudbury | Caswell | 1989 |  | 550 Kingscote @ 204g |  |  |  |
| Sudbury | Chiniguchi | 1977 \& 1994-2000 | $\begin{gathered} 3600 \text { 2yr olds } \\ 4230 \text { ylgs } \\ \hline \end{gathered}$ | 14000 ylgs | 13700 ylgs | 12500 ylgs | 11500 ylgs |
| Sudbury | Colin Scott | 1987-89 | 1000 ylgs |  | 500 ylgs |  | 500 ylgs |
| Sudbury | Davis | 1955 \& 1984-85 | 136 Simcoe @ 1.1 kg 68 2yr olds \& 133 ylgs |  | 500 ylgs |  | 500 ylgs |
| Sudbury | Donald | 1977 \& 1987-88 | 6000 ylgs | 4000 ylgs | 5000 ylgs | 5000 ylgs |  |
| Sudbury | Elboga | 1969 \& 1974-77 |  |  | $\begin{gathered} 228 \mathrm{MP} @ 4.0 \mathrm{~kg} \\ 230 \mathrm{IB} @ 3.4 \mathrm{~kg} \\ \hline \end{gathered}$ | 500 ylgs |  |
| Sudbury | Fraleck | 1977 \& 1984-86 |  |  |  | 700 2yr olds |  |
| Sudbury | George | 1977 \& 1984-92 |  | 330 Slate I. @ 3.7 kg |  | 252 MP @ 2.2kg |  |
| Sudbury | Great Mountain | None | 190 IB @ 2.9kg |  |  | 174 IB @ 3.9kg |  |
| Sudbury | Johnnie | 1992 (emig. from Bell) | 393 MP @ 4.5kg |  | 164 ML @ 2.4kg |  |  |
| Sudbury | Kelly \#27 | None |  |  |  | 500 ylgs |  |
| Sudbury | Kindle | $\begin{gathered} 1984-93 \\ 1372 \mathrm{ML} @ 1.1 \mathrm{~kg} \text { in } 1993 \end{gathered}$ | $\begin{gathered} 1000 \text { 2yr olds } \\ 1500 \text { ylgs } \end{gathered}$ |  | 400 2yr olds 2000 ylgs |  | $\begin{gathered} 1000 \text { 2yr olds } \\ 1500 \text { ylgs } \end{gathered}$ |
| Sudbury | Laundrie | 1977 \& 1980-86 |  |  |  |  | 4000 ylgs |
| Sudbury | Lower Metagamasi | None | 720 2yr olds |  | 8002 yr olds |  |  |


| District | Lake | Pre 2001 Stocking | Recent Stocking - Northeast Lake Trout Project |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2001 | 2002 | 2003 | 2004 | 2005 |
| Sudbury | Matagamasi | 1951 \& 1998-2000 | 5760 2yr olds | 8000 ylgs | 10000 ylgs | 12000 ylgs | 11500 ylgs |
| Sudbury | Nook | None | 360 2yr olds |  | 400 2yr olds |  | 3002 yr olds |
| Sudbury | Peter | 1984-85, 1989-92 |  |  |  | 700 2yr olds |  |
| Sudbury | Stouffer | None | 7202 yr olds |  | 8002 yr olds |  |  |
| Sudbury | Telfer | None | 4500 F1's | 6500 F1's | 5000 F1's |  |  |
| Sudbury | Tyson | 1956-58 \& 1981-94 |  | 4100 2yr olds | 590 Slate @1.7kg | $\begin{gathered} 187 \mathrm{MP} @ 4.6 \mathrm{~kg} \\ 3300 \text { 2yr olds } \\ \hline \end{gathered}$ | 3100 2yr olds |
| Sudbury | Whiskey | 1947-53, 1983-2000 | $\begin{aligned} & 2178 \text { Slate @ 900g } \\ & 6250 \text { fall ylgs (LM) } \end{aligned}$ |  | 5400 LM fall ylgs | 6250 LM fall ylgs | 7000 LM fall ylgs |
| Sudbury | White Oak | $\begin{gathered} 1955 \& 1996 \\ 250 \text { BS @ } 1.5 \mathrm{~kg} \text { in } 96 \end{gathered}$ |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Wawa | Molybdenite | 1991 |  |  |  |  | 2000 ylgs |

## Notes:

All yearling and 2 year old hatchery products were Killala Lake strain (KL) unless otherwise specified

Other Strains Being Used Include: BS = Big Sound (Lake Huron); IB = Iroquois Bay (Lake Huron); Kingscote Lake; Lake Simcoe; ML = Mishibishu Lake (Lake Superior); MP = Michipicoten Island (Lake Superior); Seneca Lake; \& Slate Island (Lake Superior)

The stocking rates and frequencies outlined in Table \# ? should serve as a guideline for continued stocking of these damaged waters. It should be noted that the stocking rates and frequencies presented in the above table above may not correspond exactly with the strategies outlined in Table \# ?. Potential reasons for this being the use of heavier initial stocking rates or annual initial stocking strategies given that these lakes have been void of lake trout for some time and potential forage species are presently at very high abundance. Excellent initial growth is expected.

